WEAVER

BOOS

CONSULTANTS

March 4, 2010 Project Number 0058-375-01

Ms. Ann Kolata City of South Bend Department of Community and Economic Development 227 W. Jefferson Blvd. South Bend, IN 46601

Re: Soil Characterization of Former Studebaker Foundry Reservoir Northeast Corner of Prairie Avenue and Cotter Street South Bend, Indiana

Dear Ms. Kolata:

Weaver Boos Consultants, LLC (Weaver Boos) has completed the soil characterization of the former Studebaker Foundry reservoir as outlined in our proposal dated January 21, 2010 (Proposal M100103). It is our understanding that the existing stormwater collection system located along Cotter Street will be redirected to the former Studebaker Foundry reservoir located at the northeast corner of the intersection of Cotter Street and Prairie Avenue. As part of the reconstruction project the existing reservoir will be enlarged and deepened by approximately six feet to accommodate the anticipated volume of stormwater. Based on cross sections provided to Weaver Boos there are indications that approximately 7,000 cubic yards of subsurface material will be removed.

Background

A limited environmental investigation of the reservoir completed by Hull and Associates, Inc. (Hull) indicated that the reservoir was dry and densely vegetated. Two outfalls possibly leading into the former foundry building were observed along the east wall of the reservoir. A small amount of surface debris was observed at the bottom of the reservoir by Hull and there are indications that additional material may be buried along the banks of the reservoir. Four soil samples collected by Hull from a depth of 0.0-2.0 feet along on the top of the eastern reservoir bank and at the bottom of the reservoir contained detectable concentrations of heavy metals and polynuclear aromatic hydrocarbons (PNAs). The lead and arsenic concentrations exceed current

Ms. Ann Kolata March 4, 2010 Page 2 of 4

Indiana Risk Integrated System of Closure (RISC) industrial default closure levels but not the Tier II nonresidential cleanup criteria listed in the 1996 VRP Guidance Document (see Table 1).

Project Objectives

The two objectives of this project were as follows:

- 1. Complete an exploratory subsurface study primarily along the bank of the reservoir to explore for buried debris that could be considered a potential contaminant source.
- 2. Further characterize the extent of heavy metal and PNA contamination in the surface and subsurface soils within the perimeter of the planned reservoir reconstruction to assess whether planned reuse and/or disposal of the spoil might be restricted or prohibited.

Scope of Work

Task 1 - Complete Exploratory Study

To access the site (due to dense vegetation) and complete the assessment, Weaver Boos subcontracted with a local excavating company to excavate test pits along the bank and within the floor of the existing reservoir to explore for any buried debris that could be considered a source of contamination. The field study commenced on February 4, 2010 and was completed in one day. Weaver Boos recorded observations (see Table 2 and photographs) and approximate locations of each test pit location on the attached figure (Figure 1 – Test Pit Location Map). A total of 35 test pits were excavated to a maximum depth of 5-7 feet.

Task 2 - Collect and Analyze Surface and Subsurface Soil Samples

Concurrently with Task 1, soil samples were collected from the surface (< 2.0 feet below the ground surface) and subsurface of the reservoir from pits or trenches dug using the excavator. The subsurface soil samples were collected from above the proposed bottom of the new retention basin. Weaver Boos collected six (6) surface and six (6) subsurface soil samples at locations shown on Figure 1 – Test Pit Location Map.

The soil samples were submitted to an analytical laboratory for analysis of the following parameters: lead, arsenic, and PNAs (including naphthalene). Based upon results of the analytical results, Weaver Boos requested a TCLP analysis of the sample with the highest arsenic and lead concentrations to assess whether the soil exhibits hazardous waste characteristics.

Results

The following materials were identified in several test pits.

- metal conduit, brick debris, wire, copper pipe, metal buckets, concrete debris, barrels, tires, glass, rubber materials, bottles, discarded empty drums and containers, sanitary refuse, plastic debris, fencing, buried topsoil, and demolition debris.

Most of the debris was encountered along the eastern bank of the reservoir where a considerable amount of material was disposed. However, smaller percentages of buried debris were also identified along the entire rim of the reservoir. The thickness of debris ranged from 2-7 feet from the ground surface. There were no indications of buried debris inside the reservoir at the basin bottom. Remnants of a street (former Catalpa Avenue) were also identified just to the east of the reservoir. There were no visual or olfactory indications of potential soil contamination associated with the debris. The debris identified could be acceptable for disposal at a nearby Subtitle D landfill disposal facility. Some of the debris also could be recyclable.

The results of the analytical testing are tabulated in Table 1. Similar to the results from the investigation completed by Hull and Associates, Inc. in 2001, elevated arsenic, lead, and PNAs were detected in most of the samples collected. However, the concentrations did not exceed the 1996 Tier II Nonresidential Cleanup Criteria. The arsenic, lead, and benzo(a)pyrene (a PNA) concentrations did exceed current Indiana RISC industrial default closure concentrations. To determine if the soil exhibited hazardous waste characteristics, the soil samples with the highest metal concentrations were reanalyzed using the toxicity leaching characteristic procedure (TCLP). The results indicated that the soil samples did not exhibit hazardous waste characteristics (see Table 1).

Recommendations

Weaver Boos recommends that the buried debris be disposed off-site at an acceptable disposal facility such as a Subtitle D landfill. A small percentage of the debris could be recyclable. Any potential bidder for the reconstruction project should anticipate buried debris along the entire rim of the existing reservoir.

Weaver Boos understands that the Project Site and the adjoining properties to the north and east have been enrolled into the Indiana Voluntary Remediation Program (VRP) using the July 1996

Ms. Ann Kolata March 4, 2010 Page 4 of 4

Guidance Protocol. As a result, any soil with contaminant concentrations that do not exceed the 1996 Indiana Tier II nonresidential default closure standards could be reused on-site as backfill material. Based on the results of this study, the soil excavated as part of this stormwater reconstruction project (once the debris has been removed) can be stockpiled and reused on-site assuming the physical characteristics of the soil meet the requirements for suitable backfill or topsoil. Any proposed removal/disposal of the soil from this site or the adjoining sites associated with the VRP would be restricted and could require disposal at a licensed Subtitle D landfill.

We appreciate this opportunity to be of service and are looking forward to working with you on this project. If you should have any questions or comments concerning this study, please do not hesitate to contact our office.

Sincerely,

Weaver Boos Consultants, LLC

Edward B. Stefanek Senior Project Manager

Attachments: Tables

Figure

Analytical Laboratory Report

Photographs

TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS FORMER STUDEBAKER FOUNDRY SOUTH BEND, IN

	Sample I.D.:	HA-1	HA-2	HMW-1D	SB-5	TP-1	TP-1	TP-2	TP-2	TP-3	TP-3	TP-4	TP-4	TP-5	TP-5	TP-6	TP-6			RISC Industrial
	Depth (ft):	0-0.5	0-1.0	0-2.0	0-1.5	0-2.0	4.0-5.0	0-2.0	4.0-5.0	0-2.0	4.0-5.0	0-2.0	4.0-5.0	0-2.0	4.0-5.0	0-2.0	4.0-5.0		Nonresidential	Default Closure
	Date Collected:	7/31/2001	7/31/2001	7/31/2001	8/8/2001	2/4/2010	2/4/2010	2/4/2010	2/4/2010	2/4/2010	2/4/2010	2/4/2010	2/4/2010	2/4/2010	2/4/2010	2/4/2010		Cleanu	p Criteria	Level
Parameter	Units				-												2/ 1/2010		Subsurface Soils	
METALS																		During Bolls	Subdituce Bolls	
Arsenic	mg/kg-dry	<u>13.4</u>	<u>18</u>	<u>7.4</u>	<u>57.1</u>	14	2.7	2	2	9.9	11	7.2	19	3.6	2.7	8.5	12	612	438	5.8
Lead	mg/kg-dry	<u>599</u>	449	68	122	480	3.2	11	3.3	79	250	410	420	9.7	5	240	150	1000	1000	230
TCLP Arsenic	mg/l												<rl< td=""><td>21.</td><td></td><td>210</td><td>130</td><td>1000</td><td>1000</td><td>230</td></rl<>	21.		210	130	1000	1000	230
TCLP Lead	mg/l					0.09							100				-			
PNAS																				
Acenaphthene	mg/kg-dry	<rl< td=""><td></td><td></td><td><rl< td=""><td>0.26</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.63</td><td>0.32</td><td>0.21</td><td>0.33</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>1000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>			<rl< td=""><td>0.26</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.63</td><td>0.32</td><td>0.21</td><td>0.33</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>1000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	0.26	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.63</td><td>0.32</td><td>0.21</td><td>0.33</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>1000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.63</td><td>0.32</td><td>0.21</td><td>0.33</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>1000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.63</td><td>0.32</td><td>0.21</td><td>0.33</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>1000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	0.63	0.32	0.21	0.33	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>1000</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>1000</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>1000</td></rl<></td></rl<>	<rl< td=""><td>10000</td><td>10000</td><td>1000</td></rl<>	10000	10000	1000
Acenaphthylene	mg/kg-dry	<rl< td=""><td></td><td></td><td><rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>1800</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>			<rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>1800</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>1800</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>1800</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>1800</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>1800</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>1800</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>1800</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>1800</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>1800</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>1800</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>1800</td></rl<></td></rl<>	<rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>1800</td></rl<>	0.35	NA	NA	1800
Anthracene	mg/kg-dry	<rl< td=""><td></td><td></td><td><rl< td=""><td>0.58</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1.7</td><td>0.79</td><td>0.58</td><td>0.85</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.53</td><td>10000</td><td>10000</td><td>180</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>			<rl< td=""><td>0.58</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1.7</td><td>0.79</td><td>0.58</td><td>0.85</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.53</td><td>10000</td><td>10000</td><td>180</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	0.58	<rl< td=""><td><rl< td=""><td><rl< td=""><td>1.7</td><td>0.79</td><td>0.58</td><td>0.85</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.53</td><td>10000</td><td>10000</td><td>180</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>1.7</td><td>0.79</td><td>0.58</td><td>0.85</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.53</td><td>10000</td><td>10000</td><td>180</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>1.7</td><td>0.79</td><td>0.58</td><td>0.85</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.53</td><td>10000</td><td>10000</td><td>180</td></rl<></td></rl<></td></rl<></td></rl<>	1.7	0.79	0.58	0.85	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.53</td><td>10000</td><td>10000</td><td>180</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.53</td><td>10000</td><td>10000</td><td>180</td></rl<></td></rl<>	<rl< td=""><td>0.53</td><td>10000</td><td>10000</td><td>180</td></rl<>	0.53	10000	10000	180
Benzo[a]anthracene	mg/kg-dry	<rl< td=""><td>0.84</td><td></td><td><rl< td=""><td>2.9</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>8.1</td><td>3.1</td><td>2.4</td><td>2.6</td><td><rl< td=""><td><rl< td=""><td>0.26</td><td>2.7</td><td>79.45</td><td>103.88</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	0.84		<rl< td=""><td>2.9</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>8.1</td><td>3.1</td><td>2.4</td><td>2.6</td><td><rl< td=""><td><rl< td=""><td>0.26</td><td>2.7</td><td>79.45</td><td>103.88</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	2.9	<rl< td=""><td><rl< td=""><td><rl< td=""><td>8.1</td><td>3.1</td><td>2.4</td><td>2.6</td><td><rl< td=""><td><rl< td=""><td>0.26</td><td>2.7</td><td>79.45</td><td>103.88</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>8.1</td><td>3.1</td><td>2.4</td><td>2.6</td><td><rl< td=""><td><rl< td=""><td>0.26</td><td>2.7</td><td>79.45</td><td>103.88</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>8.1</td><td>3.1</td><td>2.4</td><td>2.6</td><td><rl< td=""><td><rl< td=""><td>0.26</td><td>2.7</td><td>79.45</td><td>103.88</td><td>2000</td></rl<></td></rl<></td></rl<>	8.1	3.1	2.4	2.6	<rl< td=""><td><rl< td=""><td>0.26</td><td>2.7</td><td>79.45</td><td>103.88</td><td>2000</td></rl<></td></rl<>	<rl< td=""><td>0.26</td><td>2.7</td><td>79.45</td><td>103.88</td><td>2000</td></rl<>	0.26	2.7	79.45	103.88	2000
Benzo[a]pyrene	mg/kg-dry	<rl< td=""><td>0.75</td><td>0.28</td><td><rl< td=""><td>2</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>5.8</td><td>2.6</td><td>1.5</td><td>1.9</td><td><rl< td=""><td><rl< td=""><td>0.16</td><td>2.2</td><td>7.94</td><td></td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	0.75	0.28	<rl< td=""><td>2</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>5.8</td><td>2.6</td><td>1.5</td><td>1.9</td><td><rl< td=""><td><rl< td=""><td>0.16</td><td>2.2</td><td>7.94</td><td></td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	2	<rl< td=""><td><rl< td=""><td><rl< td=""><td>5.8</td><td>2.6</td><td>1.5</td><td>1.9</td><td><rl< td=""><td><rl< td=""><td>0.16</td><td>2.2</td><td>7.94</td><td></td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>5.8</td><td>2.6</td><td>1.5</td><td>1.9</td><td><rl< td=""><td><rl< td=""><td>0.16</td><td>2.2</td><td>7.94</td><td></td><td>15</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>5.8</td><td>2.6</td><td>1.5</td><td>1.9</td><td><rl< td=""><td><rl< td=""><td>0.16</td><td>2.2</td><td>7.94</td><td></td><td>15</td></rl<></td></rl<></td></rl<>	5.8	2.6	1.5	1.9	<rl< td=""><td><rl< td=""><td>0.16</td><td>2.2</td><td>7.94</td><td></td><td>15</td></rl<></td></rl<>	<rl< td=""><td>0.16</td><td>2.2</td><td>7.94</td><td></td><td>15</td></rl<>	0.16	2.2	7.94		15
Benzo[b]fluoranthene	mg/kg-dry	<rl< td=""><td>1.69</td><td>0.56</td><td><rl< td=""><td>3.9</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>9.5</td><td>4</td><td>2</td><td>2.5</td><td><rl< td=""><td><rl< td=""><td>0.10</td><td></td><td></td><td>69.85</td><td>1.5</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	1.69	0.56	<rl< td=""><td>3.9</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>9.5</td><td>4</td><td>2</td><td>2.5</td><td><rl< td=""><td><rl< td=""><td>0.10</td><td></td><td></td><td>69.85</td><td>1.5</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	3.9	<rl< td=""><td><rl< td=""><td><rl< td=""><td>9.5</td><td>4</td><td>2</td><td>2.5</td><td><rl< td=""><td><rl< td=""><td>0.10</td><td></td><td></td><td>69.85</td><td>1.5</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>9.5</td><td>4</td><td>2</td><td>2.5</td><td><rl< td=""><td><rl< td=""><td>0.10</td><td></td><td></td><td>69.85</td><td>1.5</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>9.5</td><td>4</td><td>2</td><td>2.5</td><td><rl< td=""><td><rl< td=""><td>0.10</td><td></td><td></td><td>69.85</td><td>1.5</td></rl<></td></rl<></td></rl<>	9.5	4	2	2.5	<rl< td=""><td><rl< td=""><td>0.10</td><td></td><td></td><td>69.85</td><td>1.5</td></rl<></td></rl<>	<rl< td=""><td>0.10</td><td></td><td></td><td>69.85</td><td>1.5</td></rl<>	0.10			69.85	1.5
Benzo[k]fluoranthene	mg/kg-dry	<rl< td=""><td>0.36</td><td></td><td><rl< td=""><td>0.78</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>2.3</td><td>1.3</td><td>0.89</td><td>1.4</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>3.3</td><td>79.45</td><td>354.98</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	0.36		<rl< td=""><td>0.78</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>2.3</td><td>1.3</td><td>0.89</td><td>1.4</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>3.3</td><td>79.45</td><td>354.98</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	0.78	<rl< td=""><td><rl< td=""><td><rl< td=""><td>2.3</td><td>1.3</td><td>0.89</td><td>1.4</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>3.3</td><td>79.45</td><td>354.98</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>2.3</td><td>1.3</td><td>0.89</td><td>1.4</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>3.3</td><td>79.45</td><td>354.98</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>2.3</td><td>1.3</td><td>0.89</td><td>1.4</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>3.3</td><td>79.45</td><td>354.98</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<>	2.3	1.3	0.89	1.4	<rl< td=""><td><rl< td=""><td><rl< td=""><td>3.3</td><td>79.45</td><td>354.98</td><td>15</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>3.3</td><td>79.45</td><td>354.98</td><td>15</td></rl<></td></rl<>	<rl< td=""><td>3.3</td><td>79.45</td><td>354.98</td><td>15</td></rl<>	3.3	79.45	354.98	15
Benzo(g,h,i) perylene	mg/kg-dry					1.6	<rl< td=""><td><rl< td=""><td><rl< td=""><td>4.2</td><td>1.6</td><td>0.91</td><td>1.2</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1.3</td><td>794.52</td><td>3759.12</td><td>150</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>4.2</td><td>1.6</td><td>0.91</td><td>1.2</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1.3</td><td>794.52</td><td>3759.12</td><td>150</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>4.2</td><td>1.6</td><td>0.91</td><td>1.2</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1.3</td><td>794.52</td><td>3759.12</td><td>150</td></rl<></td></rl<></td></rl<></td></rl<>	4.2	1.6	0.91	1.2	<rl< td=""><td><rl< td=""><td><rl< td=""><td>1.3</td><td>794.52</td><td>3759.12</td><td>150</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>1.3</td><td>794.52</td><td>3759.12</td><td>150</td></rl<></td></rl<>	<rl< td=""><td>1.3</td><td>794.52</td><td>3759.12</td><td>150</td></rl<>	1.3	794.52	3759.12	150
Chrysene	mg/kg-dry	<rl< td=""><td>1.58</td><td></td><td><rl< td=""><td>3.2</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>7.4</td><td>3.2</td><td>2</td><td>2.7</td><td><rl< td=""><td><rl< td=""><td>0.34</td><td>1.6</td><td>NA 7045 21</td><td>NA 10000</td><td>NA</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	1.58		<rl< td=""><td>3.2</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>7.4</td><td>3.2</td><td>2</td><td>2.7</td><td><rl< td=""><td><rl< td=""><td>0.34</td><td>1.6</td><td>NA 7045 21</td><td>NA 10000</td><td>NA</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	3.2	<rl< td=""><td><rl< td=""><td><rl< td=""><td>7.4</td><td>3.2</td><td>2</td><td>2.7</td><td><rl< td=""><td><rl< td=""><td>0.34</td><td>1.6</td><td>NA 7045 21</td><td>NA 10000</td><td>NA</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>7.4</td><td>3.2</td><td>2</td><td>2.7</td><td><rl< td=""><td><rl< td=""><td>0.34</td><td>1.6</td><td>NA 7045 21</td><td>NA 10000</td><td>NA</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>7.4</td><td>3.2</td><td>2</td><td>2.7</td><td><rl< td=""><td><rl< td=""><td>0.34</td><td>1.6</td><td>NA 7045 21</td><td>NA 10000</td><td>NA</td></rl<></td></rl<></td></rl<>	7.4	3.2	2	2.7	<rl< td=""><td><rl< td=""><td>0.34</td><td>1.6</td><td>NA 7045 21</td><td>NA 10000</td><td>NA</td></rl<></td></rl<>	<rl< td=""><td>0.34</td><td>1.6</td><td>NA 7045 21</td><td>NA 10000</td><td>NA</td></rl<>	0.34	1.6	NA 7045 21	NA 10000	NA
Dibenz[a,h]anthracene	mg/kg-dry	<rl< td=""><td></td><td></td><td><rl< td=""><td>0.31</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.8</td><td>0.34</td><td>0.18</td><td>0.16</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.34</td><td>7945.21</td><td>10000</td><td>1500</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>			<rl< td=""><td>0.31</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.8</td><td>0.34</td><td>0.18</td><td>0.16</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.34</td><td>7945.21</td><td>10000</td><td>1500</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	0.31	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.8</td><td>0.34</td><td>0.18</td><td>0.16</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.34</td><td>7945.21</td><td>10000</td><td>1500</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.8</td><td>0.34</td><td>0.18</td><td>0.16</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.34</td><td>7945.21</td><td>10000</td><td>1500</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.8</td><td>0.34</td><td>0.18</td><td>0.16</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.34</td><td>7945.21</td><td>10000</td><td>1500</td></rl<></td></rl<></td></rl<></td></rl<>	0.8	0.34	0.18	0.16	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.34</td><td>7945.21</td><td>10000</td><td>1500</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.34</td><td>7945.21</td><td>10000</td><td>1500</td></rl<></td></rl<>	<rl< td=""><td>0.34</td><td>7945.21</td><td>10000</td><td>1500</td></rl<>	0.34	7945.21	10000	1500
Fluoranthene	mg/kg-dry	<rl< td=""><td>0.64</td><td>0.59</td><td><rl< td=""><td>6.4</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>17</td><td>8.8</td><td>4.9</td><td>6.4</td><td><rl< td=""><td><rl< td=""><td>0.28</td><td></td><td>7.95</td><td>69.86</td><td>1.5</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	0.64	0.59	<rl< td=""><td>6.4</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>17</td><td>8.8</td><td>4.9</td><td>6.4</td><td><rl< td=""><td><rl< td=""><td>0.28</td><td></td><td>7.95</td><td>69.86</td><td>1.5</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	6.4	<rl< td=""><td><rl< td=""><td><rl< td=""><td>17</td><td>8.8</td><td>4.9</td><td>6.4</td><td><rl< td=""><td><rl< td=""><td>0.28</td><td></td><td>7.95</td><td>69.86</td><td>1.5</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>17</td><td>8.8</td><td>4.9</td><td>6.4</td><td><rl< td=""><td><rl< td=""><td>0.28</td><td></td><td>7.95</td><td>69.86</td><td>1.5</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>17</td><td>8.8</td><td>4.9</td><td>6.4</td><td><rl< td=""><td><rl< td=""><td>0.28</td><td></td><td>7.95</td><td>69.86</td><td>1.5</td></rl<></td></rl<></td></rl<>	17	8.8	4.9	6.4	<rl< td=""><td><rl< td=""><td>0.28</td><td></td><td>7.95</td><td>69.86</td><td>1.5</td></rl<></td></rl<>	<rl< td=""><td>0.28</td><td></td><td>7.95</td><td>69.86</td><td>1.5</td></rl<>	0.28		7.95	69.86	1.5
Fluorene	mg/kg-dry	<rl< td=""><td></td><td></td><td><rl< td=""><td>0.22</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.71</td><td>0.35</td><td>0.2</td><td>0.29</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>4.9 0.26</td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>			<rl< td=""><td>0.22</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.71</td><td>0.35</td><td>0.2</td><td>0.29</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>4.9 0.26</td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	0.22	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.71</td><td>0.35</td><td>0.2</td><td>0.29</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>4.9 0.26</td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.71</td><td>0.35</td><td>0.2</td><td>0.29</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>4.9 0.26</td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.71</td><td>0.35</td><td>0.2</td><td>0.29</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>4.9 0.26</td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<>	0.71	0.35	0.2	0.29	<rl< td=""><td><rl< td=""><td><rl< td=""><td>4.9 0.26</td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>4.9 0.26</td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<>	<rl< td=""><td>4.9 0.26</td><td>10000</td><td>10000</td><td>2000</td></rl<>	4.9 0.26	10000	10000	2000
Indeno[1,2,3-cd]pyrene	mg/kg-dry	<rl< td=""><td></td><td></td><td><rl< td=""><td>1.3</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>3.5</td><td>1.3</td><td>0.72</td><td>0.27</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>			<rl< td=""><td>1.3</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>3.5</td><td>1.3</td><td>0.72</td><td>0.27</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	1.3	<rl< td=""><td><rl< td=""><td><rl< td=""><td>3.5</td><td>1.3</td><td>0.72</td><td>0.27</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>3.5</td><td>1.3</td><td>0.72</td><td>0.27</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>3.5</td><td>1.3</td><td>0.72</td><td>0.27</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<>	3.5	1.3	0.72	0.27	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<>	<rl< td=""><td></td><td>10000</td><td>10000</td><td>2000</td></rl<>		10000	10000	2000
Naphthalene	mg/kg-dry	<rl< td=""><td>0.93</td><td></td><td><rl< td=""><td>0.19</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td>1.4</td><td>79.45</td><td>629.17</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	0.93		<rl< td=""><td>0.19</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td>1.4</td><td>79.45</td><td>629.17</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	0.19	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td>1.4</td><td>79.45</td><td>629.17</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td>1.4</td><td>79.45</td><td>629.17</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td>1.4</td><td>79.45</td><td>629.17</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td>1.4</td><td>79.45</td><td>629.17</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td>1.4</td><td>79.45</td><td>629.17</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td>1.4</td><td>79.45</td><td>629.17</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td>1.4</td><td>79.45</td><td>629.17</td><td>15</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td>1.4</td><td>79.45</td><td>629.17</td><td>15</td></rl<></td></rl<>	<rl< td=""><td></td><td>1.4</td><td>79.45</td><td>629.17</td><td>15</td></rl<>		1.4	79.45	629.17	15
Phenanthrene	mg/kg-dry	<rl< td=""><td>1.17</td><td>0.36</td><td><rl< td=""><td>3.2</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>8</td><td>4</td><td>2.7</td><td>3.9</td><td><rl< td=""><td><rl< td=""><td><rl 0.2</rl </td><td><rl< td=""><td>10000</td><td>10000</td><td>170</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	1.17	0.36	<rl< td=""><td>3.2</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>8</td><td>4</td><td>2.7</td><td>3.9</td><td><rl< td=""><td><rl< td=""><td><rl 0.2</rl </td><td><rl< td=""><td>10000</td><td>10000</td><td>170</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	3.2	<rl< td=""><td><rl< td=""><td><rl< td=""><td>8</td><td>4</td><td>2.7</td><td>3.9</td><td><rl< td=""><td><rl< td=""><td><rl 0.2</rl </td><td><rl< td=""><td>10000</td><td>10000</td><td>170</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>8</td><td>4</td><td>2.7</td><td>3.9</td><td><rl< td=""><td><rl< td=""><td><rl 0.2</rl </td><td><rl< td=""><td>10000</td><td>10000</td><td>170</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>8</td><td>4</td><td>2.7</td><td>3.9</td><td><rl< td=""><td><rl< td=""><td><rl 0.2</rl </td><td><rl< td=""><td>10000</td><td>10000</td><td>170</td></rl<></td></rl<></td></rl<></td></rl<>	8	4	2.7	3.9	<rl< td=""><td><rl< td=""><td><rl 0.2</rl </td><td><rl< td=""><td>10000</td><td>10000</td><td>170</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl 0.2</rl </td><td><rl< td=""><td>10000</td><td>10000</td><td>170</td></rl<></td></rl<>	<rl 0.2</rl 	<rl< td=""><td>10000</td><td>10000</td><td>170</td></rl<>	10000	10000	170
Pyrene	mg/kg-dry	<rl< td=""><td>1.54</td><td>0.54</td><td><rl< td=""><td>5.2</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>14</td><td>6.3</td><td>4</td><td>4.9</td><td><rl< td=""><td><rl< td=""><td>0.32</td><td>2.6</td><td>NA 1000</td><td>NA 10000</td><td>170</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	1.54	0.54	<rl< td=""><td>5.2</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>14</td><td>6.3</td><td>4</td><td>4.9</td><td><rl< td=""><td><rl< td=""><td>0.32</td><td>2.6</td><td>NA 1000</td><td>NA 10000</td><td>170</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	5.2	<rl< td=""><td><rl< td=""><td><rl< td=""><td>14</td><td>6.3</td><td>4</td><td>4.9</td><td><rl< td=""><td><rl< td=""><td>0.32</td><td>2.6</td><td>NA 1000</td><td>NA 10000</td><td>170</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>14</td><td>6.3</td><td>4</td><td>4.9</td><td><rl< td=""><td><rl< td=""><td>0.32</td><td>2.6</td><td>NA 1000</td><td>NA 10000</td><td>170</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>14</td><td>6.3</td><td>4</td><td>4.9</td><td><rl< td=""><td><rl< td=""><td>0.32</td><td>2.6</td><td>NA 1000</td><td>NA 10000</td><td>170</td></rl<></td></rl<></td></rl<>	14	6.3	4	4.9	<rl< td=""><td><rl< td=""><td>0.32</td><td>2.6</td><td>NA 1000</td><td>NA 10000</td><td>170</td></rl<></td></rl<>	<rl< td=""><td>0.32</td><td>2.6</td><td>NA 1000</td><td>NA 10000</td><td>170</td></rl<>	0.32	2.6	NA 1000	NA 10000	170
DRY WEIGHT									2.00	- 1	0.5	-	7.7	\ILL	\ILL	0.52	5.1	1000	10000	2000
DRY WEIGHT	wt%	90.8	95	93.2	98.6	85	94.7	95.3	94.8	90.9	89	90	94.4	86	93.4	91.2	91.2			

Source: Results from samples collected in 2001 were obtained from Table 2, Initial Phase II for the Studebaker Area A Properties by Hull and Associates dated December 2001

Notes: NA - Data Not Available RL - Reporting Limit

Surface Soil - Defined as the upper two feet of the soil column.

Subsurface Soil - Defined as the soil below a depth of two feet. 1996 Cleanup Critera from 1996 VRP Resource Guide Tables 9, 10, and 14

RISC Cleanup Criteria from RISC Technical Guide Appendix 1 (Updated September 9, 2009)

RCRA hazardous waste criteria for lead and arsenic is 5 mg/l.

Sample concentration exceeding 1996 Tier II Nonresidential Criteria Sample concentration exceeding RISC Industrial Default Cleanup Criteria

TABLE 2 TEST/EXPLORATORY PIT DESCRIPTION FORMER STUDEBAKER FOUNDRY BUILDING FEBRUARY 4, 2010

	Description	Total Depth of Excavation (from ground surface)
Locaron		(200 S 200 S
7	No debris	D i
TP-2	No debris	Īo
TP-3	Brick, cans, cups, rubber mats, tarp, bottles, metal scraps, glass, wires, metal conduit, leather scraps and concrete blocks	7.
TP-4	metal scraps chains, plastic and bricks	b dans
TP-5	No debris	-0
TP-6	Barrel lids, conduit, metal stripping, concrete blocks, tires, glass, empty 55 gallon drum,	.0
	christmas decorations, wood blocks and concrete slabs	o.
<u>Б</u> р.1	conduit bricks, wiring, empty 10 gal can of prestone, wood bricks, conduit, metal scraps, and rubber tubing	3,
EP-2	No debris, possibly stockpiled topsoil	2,
EP-3	No debris	70
EP-4	Brick, cans, cups, rubber mats, tarp, bottles, metal scraps, lids, glass, wires, and metal conduit	5,
EP-5	concrete	2'
EP-6	metal fencing scraps	2'
FP-7	wood bricks, tire, and tubing	ଦ
В-Д-Д-	Smoke stack part, rubber belts, electrical wiring (with plugs) metal strips, and chains	5-
EP-9		4'
EP-10	No debris	4
Щ-11	No debris	4'
EP-12	No debris	4,
EP-13	No debris	22
EP-14	No debris	22
EP-15	copper strips, empty metal buckets	25
EP-16	Pea gravel	37
EP-17	No debris	oī.
EP-18	No debris, encountered old sidewalk	2'
EP-19	No debris, encountered old sidewalk	2'
EP-20		2'
EP-21	Large quantity of bricks and some piping	9'
EP-22	Bricks, wire, metal conduit	5.
EP-23	No debris, possibly stockpiled topsoil	īn
EP-24	No debris, possibly stockpiled topsoil	3.
Secretaria de la constante de		

TP Test Pit - Soil samples collected for analysis EP Exploratory Pit - No soil samples collected for analysis

FIGURE

ANALYTICAL LABORATORY REPORT

February 24, 2010

Ed Stefanek Weaver Boos Consultants, LLC 4085 Meghan Beeler Court South Bend, IN 46628

RE: South Bend, Indiana

Dear Ed Stefanek:

Microbac Laboratories, Inc. received 12 samples on 2/5/2010 1:00:00 PM for the analyses presented in the following report.

The enclosed results were obtained from and are applicable to the sample(s) as received at the laboratory. All sample results are reported on an "as received" basis unless otherwise noted.

Work Order No.: ME1002212

All data included in this report have been reviewed and meet the applicable project specific and certification specific requirements, unless otherwise noted. A qualifications page is included in this report and lists the programs under which Microbac maintains certification.

This report has been paginated in its entirety and shall not be reproduced except in full, without the written approval of Microbac Laboratories.

We appreciate the opportunity to service your analytical needs. If you have any questions, please feel free to contact us.

Sincerely,

Microbac Laboratories, Inc.

Ronald J. Misiunas Client Services Manager

Enclosures

WORK ORDER SAMPLE SUMMARY

CLIENT:

Weaver Boos Consultants, LLC

Project:

South Bend, Indiana

Lab Order:

ME1002212

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
ME1002212-01A	TP - 1 @ 0 - 2'		2/4/2010 10:10:00 AM	2/5/2010
ME1002212-02A	TP - 1 @ 4 - 5'		2/4/2010 10:15:00 AM	2/5/2010
ME1002212-03A	TP - 2 @ 0 - 2'		2/4/2010 10:43:00 AM	2/5/2010
ME1002212-04A	TP - 2 @ 4 - 5'		2/4/2010 10:52:00 AM	2/5/2010
ME1002212-05A	TP - 3 @ 0 - 2'		2/4/2010 11:15:00 AM	2/5/2010
ME1002212-06A	TP - 3 @ 4 - 5'		2/4/2010 11:22:00 AM	2/5/2010
ME1002212-07A	TP - 4 @ 0 - 2'		2/4/2010 11:28:00 AM	2/5/2010
ME1002212-08A	TP - 4 @ 4 - 5'		2/4/2010 11:34:00 AM	2/5/2010
ME1002212-09A	TP - 5 @ 0 - 2'		2/4/2010 10:20:00 AM	2/5/2010
ME1002212-10A	TP - 5 @ 4 - 5'		2/4/2010 10:25:00 AM	2/5/2010
ME1002212-11A	TP - 6 @ 0 - 2'		2/4/2010 10:30:00 AM	2/5/2010
ME1002212-12A	TP - 6 @ 4 - 5'		2/4/2010 10:37:00 AM	2/5/2010

Date: Wednesday, February 24, 2010

Date: Wednesday, February 24, 2010

Client:

Weaver Boos Consultants, LLC

Client Project:

South Bend, Indiana

Client Sample ID:

TP - 1 @ 0 - 2'

Sample Description: Sample Matrix:

Solid

Work Order / ID: Collection Date: ME1002212-01

Date Received:

02/04/10 10:10 02/05/10 13:00

Analyses	ST	Result	RL	Qual	Units	DF	Analyzed
----------	----	--------	----	------	-------	----	----------

TOTAL METALS	Method: SW6010	В	Prep Da	ate/Time: 02/08/1 (08:	30 Analyst: SAA
Arsenic	A	14	0.57	mg/Kg-dry	1	02/09/10 15:52
Lead	А	480	0.42	mg/Kg-dry	1	02/09/10 15:52
TCLP METALS	Method: SW1311	/6010B	Prep Da	ate/Time: 02/15/1 0	08:	33 Analyst: SAA
Lead	A	0.090	0.0075	mg/L	1	02/15/10 19:01

PAH BY GC/MS	Method: SW8270	C	Prep D	ate/Time: 02/08/10	08:	14 Analyst: CLR
Acenaphthene	A	0.26	0.18	mg/Kg-dry	1	02/09/10 16:46
Acenaphthylene	A	ND	0.18	mg/Kg-dry	1	02/09/10 16:46
Anthracene	A	0.58	0.18	mg/Kg-dry	1	02/09/10 16:46
Benzo[a]anthracene	A	2.9	0.18	mg/Kg-dry	1	02/09/10 16:46
Benzo[a]pyrene	A	2.0	0.18	mg/Kg-dry	1	02/09/10 16:46
Benzo[b]fluoranthene	A	3.9	0.18	mg/Kg-dry	1	02/09/10 16:46
Benzo[g,h,i]perylene	A	1.6	0.18	mg/Kg-dry	1	02/09/10 16:46
Benzo[k]fluoranthene	A	0.78	0.18	mg/Kg-dry	1	02/09/10 16:46
Chrysene	A	3.2	0.18	mg/Kg-dry	1	02/09/10 16:46
Dibenz[a,h]anthracene	A	0.31	0.18	mg/Kg-dry	1	02/09/10 16:46
Fluoranthene	A	6.4	0.18	mg/Kg-dry	1	02/09/10 16:46
Fluorene	A	0.22	0.18	mg/Kg-dry	1	02/09/10 16:46
Indeno[1,2,3cd]pyrene	A	1.3	0.18	mg/Kg-dry	1	02/09/10 16:46
Naphthalene	A	0.19	0.18	mg/Kg-dry	1	02/09/10 16:46
Phenanthrene	A	3.2	0.18	mg/Kg-dry	1	02/09/10 16:46
Pyrene	A	5.2	0.18	mg/Kg-dry	1	02/09/10 16:46
Surr: Nitrobenzene-d5	S	86.4	14.2-125	%REC	1	02/09/10 16:46
Surr: 2-Fluorobiphenyl	S	86.9	21.6-112	%REC	1	02/09/10 16:46
Surr: Terphenyl-d14	S	99.5	10-139	%REC	1	02/09/10 16:46

PERCENT MOISTURE	Method: 2540B_1	8ED	Prep Date	e/Time:		Analyst: SMA
Percent Moisture	A	15	0.10	WT%	1	02/05/10 14:07

Client: Weaver Boos Consultants, LLC

Client Project: South Bend, Indiana

Client Sample ID: TP - 1 @ 4 - 5'

Sample Description:Collection Date:02/04/10 10:15Sample Matrix:SolidDate Received:02/05/10 13:00

Date:

Work Order / ID:

Wednesday, February 24, 2010

ME1002212-02

Analyses ST Result RL Qual Units DF Analyzed

TOTAL METALS	Method: SW6010	В	Prep Date	/Time: 02/08/10	08:	30 Analyst: SAA
Arsenic	A	2.7	0.49	mg/Kg-dry	1	02/09/10 15:57
Lead	A	3.2	0.37	mg/Kg-dry	1	02/09/10 15:57

AH BY GC/MS	Method: SW8270	C	Prep D	ate/Time: 02/08/10	08:	14 Analyst: CLR
Acenaphthene	A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Acenaphthylene	A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Anthracene	A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Benzo[a]anthracene	A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Benzo[a]pyrene	A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Benzo[b]fluoranthene	A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Benzo[g,h,i]perylene	A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Benzo[k]fluoranthene	A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Chrysene	A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Dibenz[a,h]anthracene	A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Fluoranthene	A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Fluorene	A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Indeno[1,2,3cd]pyrene	A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Naphthalene	A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Phenanthrene	A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Pyrene	Α .	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Surr: Nitrobenzene-d5	S	55.3	14.2-125	%REC	1	02/09/10 12:50
Surr: 2-Fluorobiphenyl	S	73.0	21.6-112	%REC	1	02/09/10 12:50
Surr: Terphenyl-d14	S	90.4	10-139	%REC	1	02/09/10 12:50

PERCENT MOISTURE	Method: 2540B_1	8ED	Prep Date	e/Time:		Analyst: SMA
Percent Moisture	A	5.3	0.10	WT%	1	02/05/10 14:07

Client: Weaver Boos Consultants, LLC

Client Project: South Bend, Indiana Client Sample ID: TP - 2 @ 0 - 2'

Sample Description:

Sample Matrix: Solid

Date: Wednesday, February 24, 2010

Work Order / ID: ME1002212-03 **Collection Date:** 02/04/10 10:43

Date Received: 02/05/10 13:00

Analyses ST Result RL Qual Units DF Analyzed

TOTAL METALS	Method: SW6010	В	Prep Date	e/Time: 02/08/10	08:3	O Analyst: SAA
Arsenic	Α	2.0	0.43	mg/Kg-dry	1	02/09/10 16:09
Lead	A	11	0.32	mg/Kg-dry	1	02/09/10 16:09

AH BY GC/MS	Method: SW8270	C	Prep D	ate/Time: 02/08/10	08:	14 Analyst: CLR
Acenaphthene	A	ND	0.16	mg/Kg-dry	1	02/09/10 15:13
Acenaphthylene	A	ND	0.16	mg/Kg-dry	1	02/09/10 15:13
Anthracene	A	ND	0.16	mg/Kg-dry	1	02/09/10 15:13
Benzo[a]anthracene	A	ND	0.16	mg/Kg-dry	1	02/09/10 15:13
Benzo[a]pyrene	A	ND	0.16	mg/Kg-dry	1	02/09/10 15:13
Benzo[b]fluoranthene	A	ND	0.16	mg/Kg-dry	1	02/09/10 15:13
Benzo[g,h,i]perylene	A	ND	0.16	mg/Kg-dry	1	02/09/10 15:13
Benzo[k]fluoranthene	A	ND	0.16	mg/Kg-dry	1	02/09/10 15:13
Chrysene	A	ND	0.16	mg/Kg-dry	1	02/09/10 15:13
Dibenz[a,h]anthracene	A	ND	0.16	mg/Kg-dry	1	02/09/10 15:13
Fluoranthene	A	ND	0.16	mg/Kg-dry	1	02/09/10 15:13
Fluorene	A	ND	0.16	mg/Kg-dry	1	02/09/10 15:13
Indeno[1,2,3cd]pyrene	A	ND	0.16	mg/Kg-dry	1	02/09/10 15:13
Naphthalene	A	ND	0.16	mg/Kg-dry	1	02/09/10 15:13
Phenanthrene	A	ND	0.16	mg/Kg-dry	1	02/09/10 15:13
Pyrene	A	ND	0.16	mg/Kg-dry	1	02/09/10 15:13
Surr: Nitrobenzene-d5	S	61.1	14.2-125	%REC	1	02/09/10 15:13
Surr: 2-Fluorobiphenyl	S	87.0	21.6-112	%REC	1	02/09/10 15:13
Surr: Terphenyl-d14	S	102	10-139	%REC	1	02/09/10 15:13

PERCENT MOISTURE	Method: 2540B_18ED		Prep Date/		Analyst: SMA		
Percent Moisture	A	4.7	0.10	WT%	1	02/05/10 14:07	

Client: Weaver Boos Consultants, LLC

Client Project: South Bend, Indiana Client Sample ID: TP - 2 @ 4 - 5'

Client Sample ID: TP - 2 G
Sample Description:

 Sample Description:
 Collection Date:
 02/04/10 10:52

 Sample Matrix:
 Solid
 Date Received:
 02/05/10 13:00

Date:

Work Order / ID:

Wednesday, February 24, 2010

ME1002212-04

Analyses ST Result RL Qual Units DF Analyzed

TOTAL METALS	Method: SW60101	Prep Date/	Prep Date/Time: 02/08/10 08:30 Analyst: SAA				
Arsenic	A	2.0	0.48	mg/Kg-dry	1	02/09/10 16:15	
Lead	A	3.3	0.36	mg/Kg-dry	1	02/09/10 16:15	

PAH BY GC/MS	Method:	SW82700	Prep Date/Time: 02/08/10 08:14 Analyst: CLR					
Acenaphthene		Α	NI	0.16	mg/Kg-dry	1	02/09/10 14:02	
Acenaphthylene		Α	NI	0.16	mg/Kg-dry	1	02/09/10 14:02	
Anthracene		Α	NI	0.16	mg/Kg-dry	1	02/09/10 14:02	
Benzo[a]anthracene		Α	NI	0.16	mg/Kg-dry	1	02/09/10 14:02	
Benzo[a]pyrene		Α	NI	0.16	mg/Kg-dry	1	02/09/10 14:02	
Benzo[b]fluoranthene		Α	N	0.16	mg/Kg-dry	1	02/09/10 14:02	
Benzo[g,h,i]perylene		Α	N	0.16	mg/Kg-dry	1	02/09/10 14:02	
Benzo[k]fluoranthene		Α	N	0.16	mg/Kg-dry	1	02/09/10 14:02	
Chrysene		Α	N	0.16	mg/Kg-dry	1	02/09/10 14:02	
Dibenz[a,h]anthracene		Α	N	0.16	mg/Kg-dry	1	02/09/10 14:02	
Fluoranthene		Α	NI	0.16	mg/Kg-dry	1	02/09/10 14:02	
Fluorene		Α	N	0.16	mg/Kg-dry	1	02/09/10 14:02	
Indeno[1,2,3cd]pyrene		Α	N	0.16	mg/Kg-dry	1	02/09/10 14:02	
Naphthalene		Α	N	0.16	mg/Kg-dry	1	02/09/10 14:02	
Phenanthrene		Α	N	0.16	mg/Kg-dry	1	02/09/10 14:02	
Pyrene		Α	N	0.16	mg/Kg-dry	1	02/09/10 14:02	
Surr: Nitrobenzene-d5		S	74.3	14.2-125	%REC	1	02/09/10 14:02	
Surr: 2-Fluorobiphenyl		S	79.8	21.6-112	%REC	1	02/09/10 14:02	
Surr: Terphenyl-d14		S	100	10-139	%REC	1	02/09/10 14:02	

PERCENT MOISTURE	Method: 2540B_18ED	Prep Date/Time:	Analyst: SMA		
Percent Moisture	A 5.2	0.10 WT%	1 02/05/10 14:07		

Client: Weaver Boos Consultants, LLC

Client Project: South Bend, Indiana

Client Sample ID: TP - 3 @ 0 - 2'

Sample Description:

Sample Matrix: Solid

Work Order / ID: Collection Date:

Date:

ME1002212-05

Wednesday, February 24, 2010

Date Received:

02/04/10 11:15 02/05/10 13:00

Analyses	ST	Result	RL	Qual	Units	DF	Analyzed

TOTAL METALS	Method: SW6010	Prep Date/Time: 02/08/10 08:30 Analyst: SAA					
Arsenic	A	9.9	0.53	mg/Kg-dry	1	02/09/10 16:20	
Lead	A	79	0.40	mg/Kg-dry	1	02/09/10 16:20	

PAH BY GC/MS	Method: SW8270	Method: SW8270C Prep Date/Time: 02/08/10 08:14 Analy					
Acenaphthene	A	0.63	0.16	mg/Kg-dry	1	02/09/10 17:09	
Acenaphthylene	A	ND	0.16	mg/Kg-dry	1	02/09/10 17:09	
Anthracene	A	1.7	0.16	mg/Kg-dry	1	02/09/10 17:09	
Benzo[a]anthracene	A	8.1	0.16	mg/Kg-dry	1	02/09/10 17:09	
Benzo[a]pyrene	A	5.8	0.16	mg/Kg-dry	1	02/09/10 17:09	
Benzo[b]fluoranthene	A	9.5	0.16	mg/Kg-dry	1	02/09/10 17:09	
Benzo[g,h,i]perylene	A	4.2	0.16	mg/Kg-dry	1	02/09/10 17:09	
Benzo[k]fluoranthene	A	2.3	0.16	mg/Kg-dry	1	02/09/10 17:09	
Chrysene	A	7.4	0.16	mg/Kg-dry	1	02/09/10 17:09	
Dibenz[a,h]anthracene	A	0.80	0.16	mg/Kg-dry	1	02/09/10 17:09	
Fluoranthene	A	17	0.16	mg/Kg-dry	1	02/09/10 17:09	
Fluorene	A	0.71	0.16	mg/Kg-dry	1	02/09/10 17:09	
Indeno[1,2,3cd]pyrene	A	3.5	0.16	mg/Kg-dry	1	02/09/10 17:09	
Naphthalene	A	ND	0.16	mg/Kg-dry	1	02/09/10 17:09	
Phenanthrene	A	8.0	0.16	mg/Kg-dry	1	02/09/10 17:09	
Pyrene	A	14	0.16	mg/Kg-dry	1	02/09/10 17:09	
Surr: Nitrobenzene-d5	S	86.1	14.2-125	%REC	1	02/09/10 17:09	
Surr: 2-Fluorobiphenyl	S	78.1	21.6-112	%REC	1	02/09/10 17:09	
Surr: Terphenyl-d14	S	97.1	10-139	%REC	1	02/09/10 17:09	

PERCENT MOISTURE	Method: 2540B_18ED		Prep Date/Time:			Analyst: SMA		
Percent Moisture	Α	9.1	0.10	WT%	1	02/05/10 14:07		

Client: Weaver Boos Consultants, LLC

Client Project: South Bend, Indiana

Client Sample ID: TP - 3 @ 4 - 5'

Sample Description: Sample Matrix: Solid

02/05/10 13:00 **Analyses** ST Result RLQual Units DF Analyzed

Date:

Work Order / ID:

Collection Date:

Date Received:

Wednesday, February 24, 2010

ME1002212-06

02/04/10 11:22

TOTAL METALS	Method: SW6010	Prep Date/Time: 02/08/10 08:30 Analyst: SAA					
Arsenic	A	11	0.46	mg/Kg-dry	1	02/09/10 16:26	
Lead	A	250	0.35	mg/Kg-dry	1	02/09/10 16:26	

AH BY GC/MS	Method: SW8270	Method: SW8270C Prep Date/Time: 02/08/10 08:14 Analyst:					
Acenaphthene	A	0.32	0.17	mg/Kg-dry	1	02/09/10 17:33	
Acenaphthylene	A	ND	0.17	mg/Kg-dry	1	02/09/10 17:33	
Anthracene	A	0.79	0.17	mg/Kg-dry	1	02/09/10 17:33	
Benzo[a]anthracene	A	3.1	0.17	mg/Kg-dry	1	02/09/10 17:33	
Benzo[a]pyrene	A	2.6	0.17	mg/Kg-dry	1	02/09/10 17:33	
Benzo[b]fluoranthene	A	4.0	0.17	mg/Kg-dry	1	02/09/10 17:33	
Benzo[g,h,i]perylene	A	1.6	0.17	mg/Kg-dry	1	02/09/10 17:33	
Benzo[k]fluoranthene	A	1.3	0.17	mg/Kg-dry	1	02/09/10 17:33	
Chrysene	A	3.2	0.17	mg/Kg-dry	1	02/09/10 17:33	
Dibenz[a,h]anthracene	A	0.34	0.17	mg/Kg-dry	1	02/09/10 17:33	
Fluoranthene	A	8.8	0.17	mg/Kg-dry	1	02/09/10 17:33	
Fluorene	A	0.35	0.17	mg/Kg-dry	1	02/09/10 17:33	
Indeno[1,2,3cd]pyrene	A	1.3	0.17	mg/Kg-dry	1	02/09/10 17:33	
Naphthalene	A	ND	0.17	mg/Kg-dry	1	02/09/10 17:33	
Phenanthrene	A	4.0	0.17	mg/Kg-dry	1	02/09/10 17:33	
Pyrene	A	6.3	0.17	mg/Kg-dry	1	02/09/10 17:33	
Surr: Nitrobenzene-d5	S	91.2	14.2-125	%REC	1	02/09/10 17:33	
Surr: 2-Fluorobiphenyl	S	94.6	21.6-112	%REC	1	02/09/10 17:33	
Surr: Terphenyl-d14	S	116	10-139	%REC	1	02/09/10 17:33	

PERCENT MOISTURE	Method: 2540B_18	BED	Prep Da	te/Time:		Analyst: SMA
Percent Moisture	A	11	0.10	WT%	1	02/05/10 14:07

Date: Wednesday, February 24, 2010

Client:

Weaver Boos Consultants, LLC

Client Project:

Sample Matrix:

South Bend, Indiana

Client Sample ID:

TP - 4 @ 0 - 2'

Sample Description:

Solid

Work Order / ID:

ME1002212-07

Collection Date: Date Received: 02/04/10 11:28 02/05/10 13:00

Analyses	ST	Result	RL	Oual	Units	DF	Analyzed
	140			S. annon	- AAA ON	-	

TOTAL METALS	Method: SW6010	Prep Date/Time: 02/08/10 08:30 Analyst: SAA				
Arsenic	A	7.2	0.53	mg/Kg-dry	1	02/09/10 16:32
Lead	A	410	0.40	mg/Kg-dry	1	02/09/10 16:32

AH BY GC/MS	Method: SW8270	C	Prep D	ate/Time: 02/08/10	08:	14 Analyst: CLR
Acenaphthene	A	0.21	0.17	mg/Kg-dry	1	02/09/10 15:36
Acenaphthylene	A	ND	0.17	mg/Kg-dry	1	02/09/10 15:36
Anthracene	A	0.58	0.17	mg/Kg-dry	1	02/09/10 15:36
Benzo[a]anthracene	A	2.4	0.17	mg/Kg-dry	1	02/09/10 15:36
Benzo[a]pyrene	A	1.5	0.17	mg/Kg-dry	1	02/09/10 15:36
Benzo[b]fluoranthene	A	2.0	0.17	mg/Kg-dry	1	02/09/10 15:36
Benzo[g,h,i]perylene	A	0.91	0.17	mg/Kg-dry	1	02/09/10 15:36
Benzo[k]fluoranthene	A	0.89	0.17	mg/Kg-dry	1	02/09/10 15:36
Chrysene	A	2.0	0.17	mg/Kg-dry	1	02/09/10 15:36
Dibenz[a,h]anthracene	A	0.18	0.17	mg/Kg-dry	1	02/09/10 15:36
Fluoranthene	A	4.9	0.17	mg/Kg-dry	1	02/09/10 15:36
Fluorene	A	0.20	0.17	mg/Kg-dry	1	02/09/10 15:36
Indeno[1,2,3cd]pyrene	A	0.72	0.17	mg/Kg-dry	1	02/09/10 15:36
Naphthalene	A	ND	0.17	mg/Kg-dry	1	02/09/10 15:36
Phenanthrene	A	2.7	0.17	mg/Kg-dry	1	02/09/10 15:36
Pyrene	A	4.0	0.17	mg/Kg-dry	1	02/09/10 15:36
Surr: Nitrobenzene-d5	S	66.0	14.2-125	%REC	1	02/09/10 15:36
Surr: 2-Fluorobiphenyl	S	74.3	21.6-112	%REC	1	02/09/10 15:36
Surr: Terphenyl-d14	S	84.4	10-139	%REC	1	02/09/10 15:36

PERCENT MOISTURE	Method: 2540B_1	8ED	Prep Date	/Time:		Analyst: SMA
Percent Moisture	A	10	0.10	WT%	1	02/05/10 14:07

Client: Weaver Boos Consultants, LLC

Client Project: Client Sample ID:

South Bend, Indiana TP - 4 @ 4 - 5'

PERCENT MOISTURE

Percent Moisture

Work Order / ID: ME1002212-08

Date:

Prep Date/Time:

WT%

0.10

Wednesday, February 24, 2010

Sample Description: Sample Matrix: Solid	I					ction Date: Received:		02/04/10 11:34 02/05/10 13:00
Analyses		ST	Result	RL	Qual	Units	DF	Analyzed
TOTAL METALS	Method:	SW6010	_		ep Date/T		0 08:3	O Analyst: SAA
Arsenic		Α	19	0.51		mg/Kg-dry	1	02/09/10 16:59
Lead		Α	420	0.38		mg/Kg-dry	1	02/09/10 16:59
TCLP METALS	Method:	SW1311	/6010B	Pre	p Date/T	ime: 02/24/1	0 08:2	0 Analyst: SAA
Arsenic		Α	ND	0.010		mg/L	1	02/24/10 14:02
PAH BY GC/MS	Method:	SW8270			p Date/T			4 Analyst: CLR
Acenaphthene		A	0.33	0.16		mg/Kg-dry	1	02/09/10 16:00
Acenaphthylene		A	ND	0.16		mg/Kg-dry	1	02/09/10 16:00
Anthracene		A	0.85	0.16		mg/Kg-dry	1	02/09/10 16:00
Benzo[a]anthracene		Α	2.6	0.16		mg/Kg-dry	1	02/09/10 16:00
Benzo[a]pyrene		A	1.9	0.16		mg/Kg-dry	1	02/09/10 16:00
Benzo[b]fluoranthene		Α	2.5	0.16		mg/Kg-dry	1	02/09/10 16:00
Benzo[g,h,i]perylene		Α	1.2	0.16		mg/Kg-dry	1	02/09/10 16:00
Benzo[k]fluoranthene		Α	1.4	0.16		mg/Kg-dry	1	02/09/10 16:00
Chrysene		Α	2.7	0.16		mg/Kg-dry	1	02/09/10 16:00
Dibenz[a,h]anthracene		Α	0.16	0.16		mg/Kg-dry	1	02/09/10 16:00
Fluoranthene		Α	6.4	0.16		mg/Kg-dry	1	02/09/10 16:00
Fluorene		Α	0.29	0.16		mg/Kg-dry	1	02/09/10 16:00
Indeno[1,2,3cd]pyrene		Α	0.97	0.16		mg/Kg-dry	1	02/09/10 16:00
Naphthalene		Α	ND	0.16		mg/Kg-dry	1	02/09/10 16:00
Phenanthrene		Α	3.9	0.16		mg/Kg-dry	1	02/09/10 16:00
Pyrene		Α	4.9	0.16		mg/Kg-dry	1	02/09/10 16:00
Surr: Nitrobenzene-d5		S	69.3	14.2-125		%REC	1	02/09/10 16:00
Surr: 2-Fluorobiphenyl		S	77.3	21.6-112		%REC	1	02/09/10 16:00
Surr: Terphenyl-d14		S	98.8	10-139		%REC	1	02/09/10 16:00

Method: 2540B_18ED

A 5.6

Analyst: SMA

02/05/10 14:07

Client: Weaver Boos Consultants, LLC

Client Project: South Bend, Indiana

Client Sample ID: TP - 5 @ 0 - 2'

Sample Description:

Collection Date: 02/04/10 10:20 Sample Matrix: Solid Date Received: 02/05/10 13:00

Date:

Work Order / ID:

Wednesday, February 24, 2010

ME1002212-09

DF **Analyses** ST Result RL Qual Units Analyzed

TOTAL METALS	Method: SW6010	Prep Date/Time: 02/08/10 08:30 Analyst: SAA				
Arsenic	A	3.6	0.55	mg/Kg-dry	1	02/09/10 17:04
Lead	A	9.7	0.41	mg/Kg-dry	1	02/09/10 17:04

AH BY GC/MS	Method:	SW8270	С	Prep D	ate/Time: 02/08/10	08:	14 Analyst: CLR
Acenaphthene		Α	ND	0.17	mg/Kg-dry	1	02/09/10 14:26
Acenaphthylene		Α	ND	0.17	mg/Kg-dry	1	02/09/10 14:26
Anthracene		Α	ND	0.17	mg/Kg-dry	1	02/09/10 14:26
Benzo[a]anthracene		Α	ND	0.17	mg/Kg-dry	1	02/09/10 14:26
Benzo[a]pyrene		Α	ND	0.17	mg/Kg-dry	1	02/09/10 14:26
Benzo[b]fluoranthene		Α	ND	0.17	mg/Kg-dry	1	02/09/10 14:26
Benzo[g,h,i]perylene		Α	ND	0.17	mg/Kg-dry	1	02/09/10 14:26
Benzo[k]fluoranthene		Α	ND	0.17	mg/Kg-dry	1	02/09/10 14:26
Chrysene		Α	ND	0.17	mg/Kg-dry	1	02/09/10 14:26
Dibenz[a,h]anthracene		Α	ND	0.17	mg/Kg-dry	1	02/09/10 14:26
Fluoranthene		А	ND	0.17	mg/Kg-dry	1	02/09/10 14:26
Fluorene		Α	ND	0.17	mg/Kg-dry	1	02/09/10 14:26
Indeno[1,2,3cd]pyrene		Α	ND	0.17	mg/Kg-dry	1	02/09/10 14:26
Naphthalene		А	ND	0.17	mg/Kg-dry	1	02/09/10 14:26
Phenanthrene		Α	ND	0.17	mg/Kg-dry	1	02/09/10 14:26
Pyrene		Α	ND	0.17	mg/Kg-dry	1	02/09/10 14:26
Surr: Nitrobenzene-d5		S	59.8	14.2-125	%REC	1	02/09/10 14:26
Surr: 2-Fluorobiphenyl		S	73.3	21.6-112	%REC	1	02/09/10 14:26
Surr: Terphenyl-d14		S	75.9	10-139	%REC	1	02/09/10 14:26

PERCENT MOISTURE	Method: 2540B_18	BED	Prep Da	te/Time:		Analyst: SMA
Percent Moisture	A	14	0.10	WT%	1	02/05/10 14:07

ST

ANALYTICAL RESULTS

Date: Wednesday, February 24, 2010

DF

Client:

Weaver Boos Consultants, LLC

Client Project:

South Bend, Indiana

Client Sample ID:

TP - 5 @ 4 - 5'

Sample Description:

Work Order / ID: **Collection Date:** ME1002212-10

Sample Matrix:

Solid

Date Received:

02/04/10 10:25 02/05/10 13:00

Analyses

Units

Qual

Analyzed

TOTAL METALS	Method: SW6010	В	Prep Date	e/Time: 02/08/1 0	08:	30 Analyst: SAA
Arsenic	Α	2.7	0.48	mg/Kg-dry	1	02/09/10 17:10
Lead	A	5.0	0.36	mg/Kg-dry	1	02/09/10 17:10

Result

 \mathbb{RL}

AH BY GC/MS	Method: SW8270	С	Prep D	ate/Time: 02/08/10	08:	14 Analyst: CLR
Acenaphthene	A	ND	0.16	mg/Kg-dry	1	02/09/10 14:49
Acenaphthylene	A	ND	0.16	mg/Kg-dry	1	02/09/10 14:49
Anthracene	A	ND	0.16	mg/Kg-dry	1	02/09/10 14:49
Benzo[a]anthracene	A	ND	0.16	mg/Kg-dry	1	02/09/10 14:49
Benzo[a]pyrene	A	ND	0.16	mg/Kg-dry	1	02/09/10 14:49
Benzo[b]fluoranthene	A	ND	0.16	mg/Kg-dry	1	02/09/10 14:49
Benzo[g,h,i]perylene	A	ND	0.16	mg/Kg-dry	1	02/09/10 14:49
Benzo[k]fluoranthene	A	ND	0.16	mg/Kg-dry	1	02/09/10 14:49
Chrysene	A	ND	0.16	mg/Kg-dry	1	02/09/10 14:49
Dibenz[a,h]anthracene	A	ND	0.16	mg/Kg-dry	1	02/09/10 14:49
Fluoranthene	A	ND	0.16	mg/Kg-dry	1	02/09/10 14:49
Fluorene	A	ND	0.16	mg/Kg-dry	1	02/09/10 14:49
Indeno[1,2,3cd]pyrene	A	ND	0.16	mg/Kg-dry	1	02/09/10 14:49
Naphthalene	A	ND	0.16	mg/Kg-dry	1	02/09/10 14:49
Phenanthrene	A	ND	0.16	mg/Kg-dry	1	02/09/10 14:49
Pyrene	A	ND	0.16	mg/Kg-dry	1	02/09/10 14:49
Surr: Nitrobenzene-d5	S	54.8	14.2-125	%REC	1	02/09/10 14:49
Surr: 2-Fluorobiphenyl	S	72.0	21.6-112	%REC	1	02/09/10 14:49
Surr: Terphenyl-d14	S	91.4	10-139	%REC	1	02/09/10 14:49

PERCENT MOISTURE	Method: 2540B_18ED	Prep Date/Time:	Analyst: SMA
Percent Moisture	A 6.6	0.10 WT%	1 02/05/10 14:07

Date:

Wednesday, February 24, 2010

Client: Weaver Boos Consultants, LLC

Client Project: South Bend, Indiana

Client Sample ID: TP - 6 @ 0 - 2'

Work Order / ID: ME1002212-11 Sample Description: **Collection Date:** 02/04/10 10:30 Sample Matrix: Solid Date Received: 02/05/10 13:00

ST Result RL Units DF **Analyses** Qual Analyzed

TOTAL METALS	Method: SW6010	В	Prep Date	e/Time: 02/08/10	08:3	0 Analyst: SAA
Arsenic	A	8.5	0.52	mg/Kg-dry	1	02/09/10 17:15
Lead	A	240	0.39	mg/Kg-dry	1	02/09/10 17:15

PAH BY GC/MS Method:	Method: SW8270C Prep Date/Time: 02/08/10 08:14 Analyst: (14 Analyst: CLR
Acenaphthene	Α		ND	0.16	mg/Kg-dry	1	02/09/10 16:23
Acenaphthylene	Α		ND	0.16	mg/Kg-dry	1	02/09/10 16:23
Anthracene	Α		ND	0.16	mg/Kg-dry	1	02/09/10 16:23
Benzo[a]anthracene	Α	0.26		0.16	mg/Kg-dry	1	02/09/10 16:23
Benzo[a]pyrene	Α	0.16		0.16	mg/Kg-dry	1	02/09/10 16:23
Benzo[b]fluoranthene	A	0.21		0.16	mg/Kg-dry	1	02/09/10 16:23
Benzo[g,h,i]perylene	Α		ND	0.16	mg/Kg-dry	1	02/09/10 16:23
Benzo[k]fluoranthene	Α		ND	0.16	mg/Kg-dry	1	02/09/10 16:23
Chrysene	Α	0.34		0.16	mg/Kg-dry	1	02/09/10 16:23
Dibenz[a,h]anthracene	Α		ND	0.16	mg/Kg-dry	1	02/09/10 16:23
Fluoranthene	Α	0.28		0.16	mg/Kg-dry	1	02/09/10 16:23
Fluorene	Α		ND	0.16	mg/Kg-dry	1	02/09/10 16:23
Indeno[1,2,3cd]pyrene	Α		ND	0.16	mg/Kg-dry	1	02/09/10 16:23
Naphthalene	Α		ND	0.16	mg/Kg-dry	1	02/09/10 16:23
Phenanthrene	Α	0.20		0.16	mg/Kg-dry	1	02/09/10 16:23
Pyrene	Α	0.32		0.16	mg/Kg-dry	1	02/09/10 16:23
Surr: Nitrobenzene-d5	S	83.6		14.2-125	%REC	1	02/09/10 16:23
Surr: 2-Fluorobiphenyl	S	84.0		21.6-112	%REC	1	02/09/10 16:23
Surr: Terphenyl-d14	S	109		10-139	%REC	1	02/09/10 16:23

PERCENT MOISTURE	Method: 2540B_1	18ED	Pro	ep Date/Ti	me:		Analyst: SMA
Percent Moisture	A	8.8	0.10		WT%	1	02/05/10 14:07

Client: Weaver Boos Consultants, LLC

Client Project: South Bend, Indiana

Client Sample ID: TP - 6 @ 4 - 5'

Work Order / ID: ME1002212-12 Sample Description: **Collection Date:** 02/04/10 10:37 Sample Matrix: Solid Date Received: 02/05/10 13:00

Date:

Wednesday, February 24, 2010

Analyses ST Result RL Qual Units DF Analyzed

TOTAL METALS	Method: SW60	10B		Prep Date	e/Time: 02/08/1	0 08:3	30 Analyst: SAA
Arsenic		A ·	12	0.52	mg/Kg-dry	1	02/09/10 17:21
Lead		A	150	0.39	mg/Kg-dry	1	02/09/10 17:21

PAH BY GC/MS	Method: SW8270	C	Prep D	ate/Time: 02/08/10	0 08:	14 Analyst: CLR
Acenaphthene	A	ND	0.16	mg/Kg-dry	1	02/09/10 17:56
Acenaphthylene	A	0.35	0.16	mg/Kg-dry	1	02/09/10 17:56
Anthracene	A	0.53	0.16	mg/Kg-dry	1	02/09/10 17:56
Benzo[a]anthracene	A	2.7	0.16	mg/Kg-dry	1	02/09/10 17:56
Benzo[a]pyrene	A	2.2	0.16	mg/Kg-dry	1	02/09/10 17:56
Benzo[b]fluoranthene	A	3.3	0.16	mg/Kg-dry	1	02/09/10 17:56
Benzo[g,h,i]perylene	A	1.6	0.16	mg/Kg-dry	1	02/09/10 17:56
Benzo[k]fluoranthene	A	1.3	0.16	mg/Kg-dry	1	02/09/10 17:56
Chrysene	A	2.8	0.16	mg/Kg-dry	1	02/09/10 17:56
Dibenz[a,h]anthracene	A	0.34	0.16	mg/Kg-dry	1	02/09/10 17:56
Fluoranthene	A	4.9	0.16	mg/Kg-dry	1	02/09/10 17:56
Fluorene	A	0.26	0.16	mg/Kg-dry	1	02/09/10 17:56
Indeno[1,2,3cd]pyrene	A	1.4	0.16	mg/Kg-dry	1	02/09/10 17:56
Naphthalene	A	ND	0.16	mg/Kg-dry	1	02/09/10 17:56
Phenanthrene	A	2.6	0.16	mg/Kg-dry	1	02/09/10 17:56
Pyrene	A	5.1	0.16	mg/Kg-dry	1	02/09/10 17:56
Surr: Nitrobenzene-d5	S	83.7	14.2-125	%REC	1	02/09/10 17:56
Surr: 2-Fluorobiphenyl	S	88.8	21.6-112	%REC	1	02/09/10 17:56
Surr: Terphenyl-d14	S	129	10-139	%REC	1	02/09/10 17:56

PERCENT MOISTURE	Method: 2540B_1	8ED	Prep Da	ate/Time:		Analyst: SMA
Percent Moisture	A	8.8	0.10	WT%	1	02/05/10 14:07

FLAGS, FOOTNOTES AND ABBREVIATIONS (as needed)

NA = Not Analyzed N/A = Not Applicable

mg/L = Milligrams per Liter (ppm) ug/L = Micrograms per Liter (ppb) cfu = Colony Forming Unit
mg/Kg = Milligrams per Kilogram (ppm) ug/Kg = Micrograms per Kilogram (ppb) ng/L = Nanograms per Liter (ppt)

U = Undetected

J = Analyte concentration detected between RL and MDL (Metals / Organics)

= Analyte concentration detected betweeen 1/2 PQL and PQL (for TIC analytes only)

B = Detected in the associated Method Blank at a concentration above the routine PQL/RL

Detected in the associated Method Blank at a concentration above the Method Detection Limit but less than the routine POL/RL

D = Surrogate recoveries are not calculated due to sample dilution

ND = Not Detected at the Reporting Limit (or the Method Detection Limit, if listed)

E = Value above quantitation range

H = Analyte was prepared and/or analyzed outside of the analytical method holding time

I = Matrix Interference

R = RPD outside accepted recovery limits
S = Spike recovery outside recovery limits

Surr = Surrogate

DF = Dilution Factor RL = Reporting Limit ST = Sample Type MDL = Method Detection Limit

SAMPLE TYPES

A = Analyte

I = Internal Standard

S = Surrogate

T = Tentatively Identified Compound (TIC, concentration estimated)

OC SAMPLE IDENTIFICATIONS

MBLK	=	Method Blank	ICSA	=	Interference Check Standard "A"	OPR	=	Ongoing Precision and
DUP	=	Method Duplicate	ICSAB	=	Interference Check Standard "AB"			Recovery Standard
LCS	=	Laboratory Control Sample	LCSD	=	Laboratory Control Sample Duplicate			
MS	=	Matrix Spike	MSD	=	Matrix Spike Duplicate			
ICB	=	Initial Calibration Blank	CCB	=	Continuing Calibration Blank			
ICV	=	Initial Calibration Verification	CCV	=	Continuing Calibration Verification			
PDS	=	Post Digestion Spike	SD	=	Serial Dilution			

CERTIFICATIONS

Below is a list of certifications maintained by the Microbac Merrillville Laboratory. All data included in this report has been reviewed for and meets all project specific and quality control requirements of the applicable accreditation, unless otherwise noted. Complete lists of individual analytes pursuant to each certification below are available upon request.

- Illinois EPA for the analysis wastewater and solid waste in accordance with the requirements of the National Environmental Laboratory Accreditation Program [NELAP] (accreditation #100435)
- Illinois Department of Public Health for the microbiological analysis of drinking water (registry #1755266)
- Indiana DEM approved support laboratory for solid waste and wastewater analyses
- Indiana SDH for the chemical analysis of drinking water (lab #C-45-03)
- Indiana SDH for the microbiological analysis of drinking water (lab #M-45-8)
- Kentucky DEP for the chemical analysis of drinking water (lab #90147)
- Kentucky EPPC for the analysis of samples applicable to the Underground Storage Tank program (lab #75)
- New York SDH for the chemical analysis of air and emissions (lab #11909)
- North Carolina DENR for the environmental analysis for NPDES effluent, surface water, groundwater, and pretreatment regulations (certificate #597)
- Tennessee DEC for the chemical analysis of drinking water (lab #04017)
- Wisconsin DNR for the chemical analysis of wastewater and solid waste (lab #998036710)

MICROBAC LOCATIONS, SERVICE CENTERS (SC) AND SATELLITE OFFICES (Sat)

Baltimore Division - Baltimore, MD	Kentucky Division - Louisville, KY	Ohio Valley Division - Marietta, OH
Camp Hill Division - Camp Hill, PA	Kentucky Division (Sat) - Evansville, IN	Pittsburgh Division - Warrendale, PA
Camp Hill Division (SC) - Pittston, PA	Kentucky Division (Sat) - Lexington, KY	Richmond Division - Richmond, VA
Chicagoland Division - Merrillville, IN	Kentucky Division (Sat) - Paducah, KY	South Carolina Division - New Ellenton, SC
Chicagoland Division (SC) - Indianapolis, IN	Knoxville Division - Maryville, TN	South Jersey Division - Laurel Springs, NJ
Southern California Division - Corona, CA	Massachusetts Division - Worchester, MA	Southern Headquarters - Poquoson, VA
Erie Division - Erie, PA	Microbac Corporate Office - Pittsburgh, PA	Southern Testing Division - Wilson, NC
Fayetteville Division - Fayetteville, NC	Microbac NY - Cortland Office - Cortland, NY	Southern Testing Division (Sat) - Greensboro, NC
Hauser Division - Boulder, CO	Microbac NY - Waverly Office - Waverly, NY	Venice Division - Venice, FL

COOLER INSPECTION

Client Name: Weave	er Boos Consultants, l	LL		Date / Time	Receive	d: <u>2/5/2010 1:00:00 PM</u>
Work Order Number	ME1002212			Received by	/: [DP
Checklist completed I	by DP	2/5/2010 1:41:05 PM		Reviewed b	y DPP	2/5/2010 3:07:54 PI
		Carrier name:	Microbac			
After-Hour Arrival?			Yes	□ N	0 🗸	
Shipping container/co	ooler in good condition	?	Yes	✓ N		Not Present
	on shippping containe		Yes	□ N	0	Not Present
Custody seals intact			Yes	□ N	o 🗌	Not Present
Chain of custody pres	sent?		Yes	✓ N	o 🗌	
Chain of custody inclu	uded sufficient client id	lentification?	Yes	✓ N	0	
Chain of custody inclu	uded sufficient sample	collector information?	Yes	✓ N	0	
Chain of custody inclu	uded a sample descrip	tion?	Yes	✓ N	o 🗌	
Chain of custody agre	ees with sample labels	?	Yes	✓ N	o 🗌	
Chain of custody iden	ntified the appropriate	matrix?	Yes	✓ N	о 🗌	4
Chain of custody inclu	uded date of collection	?	Yes	✓ N	o 🗌	
Chain of custody inclu	uded time of collection	?	Yes	✓ N	o 🗌	
Chain of custody iden	ntified the appropriate	number of containers?	Yes	✓ N	0	
Samples in proper co	ntainer/bottle?		Yes	✓ N	o 🗌	
Sample containers in	tact?		Yes	✓	0	
Sufficient sample volu	ume for indicated test?)	Yes	✓ N	o 🗌	
All samples received	within holding time?		Yes	✓ N	o 🗌	
If samples are preser	ved, are the preservat	ives identified?	Yes	✓ N	o 🗌	
Samples properly pre	eserved?		Yes	✓ N	0	
	lf	No, adjusted by?		Date/Time		
Chain of custody incli	uded the requested an	alyses?	Yes	✓ N	o 🗌	
Chain of custody sign	ned when relinquished	and received?	Yes	✓ N	0	
Samples received on	ice?		Yes	✓ N	o 🗌	
	Container/	Temp Blank temperatures	Cooler	Temp		
			1	4 ºC	_	_
VOA vials for aqueou	is samples have zero l	neadspace? No VOA	vials submitted	\checkmark	Yes	No 🗆
ANY "NO" EVALUAT	TION (excluding After	-Hour Receipt) REQUIRE	S CLIENT NOT	IFICATION.		
General Comments:						
Sample ID	Client Sample II)		Comments		
ME1002212-01A	TP - 1 @ 0 - 2'	Report in dry weight				
ME1002212-02A	TP - 1 @ 4 - 5'	Report in dry weight				
ME1002212-03A	TP - 2 @ 0 - 2'	Report in dry weight				
ME1002212-04A	TP - 2 @ 4 - 5'	Report in dry weight				
ME1002212-05A	TP - 3 @ 0 - 2'	Report in dry weight				
ME1002212-06A	TP - 3 @ 4 - 5'	Report in dry weight				
ME1002212-07A	TP - 4 @ 0 - 2'	Report in dry weight				
ME1002212-08A	TP - 4 @ 4 - 5'	Report in dry weight				
ME1002212-09A	TP - 5 @ 0 - 2'	Report in dry weight				
ME1002212-10A	TP - 5 @ 4 - 5'	Report in dry weight				
ME1002212-11A ME1002212-12A	TP - 6 @ 0 - 2'	Report in dry weight				
N/II= 11102212-124	11 = 5 (0) 4 = 5	IREDOLL ID GIV METOD:				

Date: Wednesday, February 24, 2010

Ron Misiunas

From: Stefanek, Ed [estefanek@weaverboos.com]

Sent: Friday, February 12, 2010 12:26 PM

To: Ron Misiunas; Slough, Jodi

Subject: RE: ME1002212 - South Bend, Indiana

Ron,

I also need a TCLP for the highest lead, which I believe is TP-1 at 0-2. Can you put that on order as well?

Ed

Edward B. Stefanek | Sr. Project Manager

Weaver Boos Consultants

4085 Meghan Beeler Court | South Bend, IN 46628 t. 574-271-3447 | f. 574-271-3343 | m. 574-302-0614 www.weaverboos.com | estefanek@weaverboos.com

DISCLAIMER

Electronic documents provided by Weaver Boos Consultants are an instrument of service and are being provided solely as a convenience to the user. Any fee(s) for this documentation are handling fees and are due upon receipt. Weaver Boos Consultants makes no representation regarding the fitness of this documentation for any particular purpose or suitability for use with any software or hardware. Due to the nature of electronic documents and the fact they may be altered (whether intentional or not), Weaver Boos Consultants does not express or imply warranty for the accuracy or completeness of this documentation. Hard copies (i.e., prints, paper copies, etc.) shall prevail in any dispute over the accuracy or sufficiency of electronic documents and are available through this office. The information provided shall not be copied (electronically or otherwise) or used for any purpose not authorized in writing by Weaver Boos Consultants. Through the use of the information contained herein, the user agrees to indemnify and hold Weaver Boos Consultants (or any associated office) and any of its employees harmless from any loss, damage, liability or cost, including reasonable attorney's fees arising from any use or reuse of any electronic documentation or information as contained herein.

IMPORTANT NOTICE: The information contained in this email message (including any attachments) may be confidential, privileged or both, and is intended exclusively for the addressee(s) intended by the sender. If it appears you have received this email message in error, please notify the sender immediately and then delete; any other use of this email message is prohibited. Thank you.

From: Ron Misiunas [mailto:rmisiunas@microbac.com]

Sent: Friday, February 12, 2010 12:02 PM

To: Stefanek, Ed; Slough, Jodi

Subject: ME1002212 - South Bend, Indiana

Hello Ed & Jodi -

I have attached the results for the samples we rec'd on 2/5. Sample 1002212-08 (TP-4@4-5') had the highest total As value (19 mg/Kg) of the bunch. Per the COC, I am having this sample analyzed for TCLP As. Results will be available next week.

Thanks and have a great day.

Ron

Ronald J. Misiunas

Microbac Laboratories, Inc.
250 West 84th Drive

Merrillville, IN 46410

office: 219-769-8378 fax: 219-769-1664 mobile: 219-746-4677

email: rmisiunas@microbac.com

This communication is for the exclusive and confidential use of the designated recipient, and any other distribution or use is unauthorized and strictly prohibited. If you are not the designated recipient, please notify the sender immediately then delete the message from your computer or destroy the facsimile.

Did you know Microbac provides:

Specialized Environmental Services:

Air Analysis: http://www.microbac.com/air.html • Low Level Mercury Analysis: http://www.microbac.com/llhg.html Food / Microbiology Services:

Food Safety: http://www.microbac.com/food_micro.html • Retail Inspection: http://www.microbac.com/foodstoreinsp.html

[] Level IV CLP-like [] Level II [] Level III CLP-like For Lab Use Only 130 212 07.5 demail (address) estable because bons, con Chain of Custody Record Date/Time Date/Time Date/Time Report Type Sampler Phone # 57% 922 5280 1007 ō 36 10 36 20 0 0 n 0] Archive 5 % 102 202 ** Preservative Types: (1) HNO3, (2) H2SO4, (3) HCI, (4) NaOH, (5) Zinc Acetate, (6) Methanol, (7) Sodium Bisuifate, (8) Sodium Thiosulfate, (9) Hexane, (U) Unpreserved Instructions on back [] Results Only [] Level III Page [] Level IV [] Return [] EDD Received fol/Lab By (signature) Number * Matrix Types: Soil/Solid (S), Sludge, Oil, Wipe, Drinking Water (DW), Groundwater (GW), Surface Water (SW), Waste Water (WW), Other (specify) Received By (signature) Received By (signature) [] Dispose as appropriate Turnaround Time Location Provide Live, South Bond, 19 Routine (7 working days) (needed by) 1 [] RUSH* (notify lab) 1 7 7 7 7 1 Indianapolis, IN 46278 [] 5713 West 85th Street Sample Disposition 1300 Preservative Fax: 317-872-1379 Tel: 317-872-1375 Requested Analyses Types ** 3 2/5/10 3 Date/Time Date/Time Date/Time City of South Bend Compliance Monitoring? [] Yes(1) [] No No. of Containers 3 0 (C (0 CE:11 86.11 6.63 6.03 01:0 3 51.0 11.15 11:34 Time Collected Relinquished By (signature) Relinquished By (signature) Relinquished By (signature) Sampler Signature 2/4/10 0/1/10 0/1/10 3/1/10 2/0/10 01/1/6 01/1/16 Merrillville, IN 46410 2/4/10 01/1/10 9/1/6 | Radioactive 0277 [] 250 West 84th Drive Date Collected Fax: 219-769-1664 Tel: 219-769-8378 (1) Agency/Program Piltered Project # Od [] Non-Hazardous Composite Grab 7 1 1 7 7 7 7 7 > 0 [] Fax (fax #) Consultants Submitted to: "xirisM 0/) cΛ S O S 0 0 CA V KDO TREPAMONSIS ON SAMPHE WITH 3 Meghan Deeler Hazardous Slough Sample temperature upon receipt in degrees C = Schanek [] Mail [] Telephone the Mighest Arsenic level PNA's including naphthatene Send DOUR BOOS @ Client Sample ID 8 ossible Hazard Identification rerobac SOLUDI O シーカ 0.7 5-5 2-0 2-5 5-7 0.7 2-0 2-0 60-7 relephone # 574 Sampled by (PRINT) City, State, Zip Send Report via 00 0 6 6 0 (1) 0770 -50 07-0 Client Name Comments rev. 11/04/04 7 0 Address Contact WBG-SOUTH BEND 2/16/2010

ME1002212 South Bend, Indiana Ed Stefanek

CES

Page 19 of 20

Cauer Boos Consultants BS Meshin Bule Ct Swith Bend Int Tword Stepenel 574.271, 3447 Int) Jodi Stough Ilmail [Telephone Tex (fax #) Istrix Types: Soil/Soild (S), Sludge, Oil, Wipe, Drin ative Types: (1) HNO3, (2) H2SO4, (3) HCI, (4) Ne		Project C'Hy of Swith B. Location Annie Nue Swith Po # 8058 - 375-0/ Compliance Monitoring? [] Yes(1) [INo	11.			Inother confirmation	Accept the
Contact Edicured Stetemer Telephone # 574, 271, 3417 Sampled by (PRINT) Jocki Stollach Send Report via [] Mail [] Telephone [] Fax (fax #) * Matrix Types: Soll/Solid (S), Sludge, Oil, Wipe, Drinl ** Preservative Types: (1) HNO3, (2) H2SO4, (3) HCI, (4) Na		ce Monitoring? [South 1	Bond Agrou	Turnaround Time (PRoutine (7 working days)	L'ABesults Only	Report Type [] Level II [] Level III
Report via [] Mail [] Telephone [] Fax (fax #)		Program Son Cinneture]Yes(1) []No		(kg papaeu)	[] Level IV	
		Sampler Signature Water (DW), Groundwa (5) Zinc Acetate, (6) Me	ater (GW), Sur lethanol, (7) Sc	(1) e-ms (2W), Vodium Bisulfate, (8)	inpler Signature Sampler Phone # 757 = 329 [] e-mail (address) [] E-mail (address)	ZSZ (V	J. M. C.
Client Sample ID Matrix*		Date Collected	Time Collected	Requested Analyses ———————————————————————————————————	Wedd (60d)		For Lab Use Only
2-60451 51		101/16	0.37 2	3	7		
Possible Hazard Identification [] Hazardous [] Non-Hazardous		[] Radioactive		Sample Disposition	[] Dispose as appropriate	[] Return []	Archive
	y	1 1/25		15/10, 10:2	Sold Market By Salaman By	(almine)	2/5-1025
	Refinquis	Relinquished By (signature)		Date/Time /	Received By (signature)	nature)	Date/Time
Sample temperature upon receipt in degrees C = (Relinquis	Relinquished By (signature)		Date/Time	Received for Lab By (signature)	By (signature)	Date/Time 13 &

PHOTOGRAPHS

