

March 4, 2010 Project Number 0058-375-01

Ms. Ann Kolata
City of South Bend
Department of Community and Economic Development
227 W. Jefferson Blvd.
South Bend, IN 46601

Re: Soil Characterization of Former Studebaker Foundry Reservoir Northeast Corner of Prairie Avenue and Cotter Street South Bend, Indiana

Dear Ms. Kolata:

Weaver Boos Consultants, LLC (Weaver Boos) has completed the soil characterization of the former Studebaker Foundry reservoir as outlined in our proposal dated January 21, 2010 (Proposal M100103). It is our understanding that the existing stormwater collection system located along Cotter Street will be redirected to the former Studebaker Foundry reservoir located at the northeast corner of the intersection of Cotter Street and Prairie Avenue. As part of the reconstruction project the existing reservoir will be enlarged and deepened by approximately six feet to accommodate the anticipated volume of stormwater. Based on cross sections provided to Weaver Boos there are indications that approximately 7,000 cubic yards of subsurface material will be removed.

Background

A limited environmental investigation of the reservoir completed by Hull and Associates, Inc. (Hull) indicated that the reservoir was dry and densely vegetated. Two outfalls possibly leading into the former foundry building were observed along the east wall of the reservoir. A small amount of surface debris was observed at the bottom of the reservoir by Hull and there are indications that additional material may be buried along the banks of the reservoir. Four soil samples collected by Hull from a depth of 0.0-2.0 feet along on the top of the eastern reservoir bank and at the bottom of the reservoir contained detectable concentrations of heavy metals and polynuclear aromatic hydrocarbons (PNAs). The lead and arsenic concentrations exceed current

Ms. Ann Kolata March 4, 2010 Page 2 of 4

Indiana Risk Integrated System of Closure (RISC) industrial default closure levels but not the Tier II nonresidential cleanup criteria listed in the 1996 VRP Guidance Document (see Table 1).

Project Objectives

The two objectives of this project were as follows:

- 1. Complete an exploratory subsurface study primarily along the bank of the reservoir to explore for buried debris that could be considered a potential contaminant source.
- 2. Further characterize the extent of heavy metal and PNA contamination in the surface and subsurface soils within the perimeter of the planned reservoir reconstruction to assess whether planned reuse and/or disposal of the spoil might be restricted or prohibited.

Scope of Work

Task 1 - Complete Exploratory Study

To access the site (due to dense vegetation) and complete the assessment, Weaver Boos subcontracted with a local excavating company to excavate test pits along the bank and within the floor of the existing reservoir to explore for any buried debris that could be considered a source of contamination. The field study commenced on February 4, 2010 and was completed in one day. Weaver Boos recorded observations (see Table 2 and photographs) and approximate locations of each test pit location on the attached figure (Figure 1 – Test Pit Location Map). A total of 35 test pits were excavated to a maximum depth of 5-7 feet.

Task 2 - Collect and Analyze Surface and Subsurface Soil Samples

Concurrently with Task 1, soil samples were collected from the surface (< 2.0 feet below the ground surface) and subsurface of the reservoir from pits or trenches dug using the excavator. The subsurface soil samples were collected from above the proposed bottom of the new retention basin. Weaver Boos collected six (6) surface and six (6) subsurface soil samples at locations shown on Figure 1 – Test Pit Location Map.

The soil samples were submitted to an analytical laboratory for analysis of the following parameters: lead, arsenic, and PNAs (including naphthalene). Based upon results of the analytical results, Weaver Boos requested a TCLP analysis of the sample with the highest arsenic and lead concentrations to assess whether the soil exhibits hazardous waste characteristics.

Ms. Ann Kolata March 4, 2010 Page 3 of 4

Results

The following materials were identified in several test pits.

- metal conduit, brick debris, wire, copper pipe, metal buckets, concrete debris, barrels, tires, glass, rubber materials, bottles, discarded empty drums and containers, sanitary refuse, plastic debris, fencing, buried topsoil, and demolition debris.

Most of the debris was encountered along the eastern bank of the reservoir where a considerable amount of material was disposed. However, smaller percentages of buried debris were also identified along the entire rim of the reservoir. The thickness of debris ranged from 2-7 feet from the ground surface. There were no indications of buried debris inside the reservoir at the basin bottom. Remnants of a street (former Catalpa Avenue) were also identified just to the east of the reservoir. There were no visual or olfactory indications of potential soil contamination associated with the debris. The debris identified could be acceptable for disposal at a nearby Subtitle D landfill disposal facility. Some of the debris also could be recyclable.

The results of the analytical testing are tabulated in Table 1. Similar to the results from the investigation completed by Hull and Associates, Inc. in 2001, elevated arsenic, lead, and PNAs were detected in most of the samples collected. However, the concentrations did not exceed the 1996 Tier II Nonresidential Cleanup Criteria. The arsenic, lead, and benzo(a)pyrene (a PNA) concentrations did exceed current Indiana RISC industrial default closure concentrations. To determine if the soil exhibited hazardous waste characteristics, the soil samples with the highest metal concentrations were reanalyzed using the toxicity leaching characteristic procedure (TCLP). The results indicated that the soil samples did not exhibit hazardous waste characteristics (see Table 1).

Recommendations

Weaver Boos recommends that the buried debris be disposed off-site at an acceptable disposal facility such as a Subtitle D landfill. A small percentage of the debris could be recyclable. Any potential bidder for the reconstruction project should anticipate buried debris along the entire rim of the existing reservoir.

Weaver Boos understands that the Project Site and the adjoining properties to the north and east have been enrolled into the Indiana Voluntary Remediation Program (VRP) using the July 1996

Ms. Ann Kolata March 4, 2010 Page 4 of 4

Guidance Protocol. As a result, any soil with contaminant concentrations that do not exceed the 1996 Indiana Tier II nonresidential default closure standards could be reused on-site as backfill material. Based on the results of this study, the soil excavated as part of this stormwater reconstruction project (once the debris has been removed) can be stockpiled and reused on-site assuming the physical characteristics of the soil meet the requirements for suitable backfill or topsoil. Any proposed removal/disposal of the soil from this site or the adjoining sites associated with the VRP would be restricted and could require disposal at a licensed Subtitle D landfill.

We appreciate this opportunity to be of service and are looking forward to working with you on this project. If you should have any questions or comments concerning this study, please do not hesitate to contact our office.

Sincerely,

Weaver Boos Consultants, LLC

Edward B. Stefanek () Senior Project Manager

Attachments: Tables

Figure

Analytical Laboratory Report

Photographs

TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS FORMER STUDEBAKER FOUNDRY SOUTH BEND, IN

	Sample I.D.:	HA-1	HA-2	HMW-1D	SB-5	TP-1	TP-1	TP-2	TP-2	TP-3	TP-3	TP-4	TP-4	TP-5	TP-5	TP-6	TP-6	1006 Tier Π	Nonresidential	RISC Industrial
	Depth (ft):	0-0.5	0-1.0	0-2.0	0-1.5	0-2.0	4.0-5.0	0-2.0	4.0-5.0	0-2.0	4.0-5.0	0-2.0	4.0-5.0	0-2.0	4.0-5.0	0-2.0	4.0-5.0		Criteria	Default Closure
	Date Collected:	7/31/2001	7/31/2001	7/31/2001	8/8/2001	2/4/2010	2/4/2010	2/4/2010	2/4/2010	2/4/2010	2/4/2010	2/4/2010	2/4/2010	2/4/2010	2/4/2010	2/4/2010	2/4/2010	Cleanu	Criteria	Level
Parameter	Units																	Surface Soils	Subsurface Soils	
METALS																				
Arsenic	mg/kg-dry	<u>13.4</u>	18	7.4	<u>57.1</u>	<u>14</u>	2.7	2	2	9.9	11	7.2	<u>19</u>	3.6	2.7	<u>8.5</u>	12	612	438	5.8
Lead	mg/kg-dry	<u>599</u>	449	68	122	<u>480</u>	3.2	11	3.3	79	250	410	420	9.7	5	240	150	1000	1000	230
TCLP Arsenic	mg/l												<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
TCLP Lead	mg/l					0.09														
PNAS																				
Acenaphthene	mg/kg-dry	<rl< td=""><td></td><td></td><td><rl< td=""><td>0.26</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.63</td><td>0.32</td><td>0.21</td><td>0.33</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>1800</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>			<rl< td=""><td>0.26</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.63</td><td>0.32</td><td>0.21</td><td>0.33</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>1800</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	0.26	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.63</td><td>0.32</td><td>0.21</td><td>0.33</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>1800</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.63</td><td>0.32</td><td>0.21</td><td>0.33</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>1800</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.63</td><td>0.32</td><td>0.21</td><td>0.33</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>1800</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	0.63	0.32	0.21	0.33	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>1800</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>1800</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>1800</td></rl<></td></rl<>	<rl< td=""><td>10000</td><td>10000</td><td>1800</td></rl<>	10000	10000	1800
Acenaphthylene	mg/kg-dry	<rl< td=""><td></td><td><u> 200</u></td><td><rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>180</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>		<u> 200</u>	<rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>180</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>180</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>180</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>180</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>180</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>180</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>180</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>180</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>180</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>180</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>180</td></rl<></td></rl<>	<rl< td=""><td>0.35</td><td>NA</td><td>NA</td><td>180</td></rl<>	0.35	NA	NA	180
Anthracene	mg/kg-dry	<rl< td=""><td></td><td></td><td><rl< td=""><td>0.58</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1.7</td><td>0.79</td><td>0.58</td><td>0.85</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.53</td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>			<rl< td=""><td>0.58</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1.7</td><td>0.79</td><td>0.58</td><td>0.85</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.53</td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	0.58	<rl< td=""><td><rl< td=""><td><rl< td=""><td>1.7</td><td>0.79</td><td>0.58</td><td>0.85</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.53</td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>1.7</td><td>0.79</td><td>0.58</td><td>0.85</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.53</td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>1.7</td><td>0.79</td><td>0.58</td><td>0.85</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.53</td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<>	1.7	0.79	0.58	0.85	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.53</td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.53</td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<>	<rl< td=""><td>0.53</td><td>10000</td><td>10000</td><td>2000</td></rl<>	0.53	10000	10000	2000
Benzo[a]anthracene	mg/kg-dry	<rl< td=""><td>0.84</td><td></td><td><rl< td=""><td>2.9</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>8.1</td><td>3.1</td><td>2.4</td><td>2.6</td><td><rl< td=""><td><rl< td=""><td>0.26</td><td>2.7</td><td>79.45</td><td>103,88</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	0.84		<rl< td=""><td>2.9</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>8.1</td><td>3.1</td><td>2.4</td><td>2.6</td><td><rl< td=""><td><rl< td=""><td>0.26</td><td>2.7</td><td>79.45</td><td>103,88</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	2.9	<rl< td=""><td><rl< td=""><td><rl< td=""><td>8.1</td><td>3.1</td><td>2.4</td><td>2.6</td><td><rl< td=""><td><rl< td=""><td>0.26</td><td>2.7</td><td>79.45</td><td>103,88</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>8.1</td><td>3.1</td><td>2.4</td><td>2.6</td><td><rl< td=""><td><rl< td=""><td>0.26</td><td>2.7</td><td>79.45</td><td>103,88</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>8.1</td><td>3.1</td><td>2.4</td><td>2.6</td><td><rl< td=""><td><rl< td=""><td>0.26</td><td>2.7</td><td>79.45</td><td>103,88</td><td>15</td></rl<></td></rl<></td></rl<>	8.1	3.1	2.4	2.6	<rl< td=""><td><rl< td=""><td>0.26</td><td>2.7</td><td>79.45</td><td>103,88</td><td>15</td></rl<></td></rl<>	<rl< td=""><td>0.26</td><td>2.7</td><td>79.45</td><td>103,88</td><td>15</td></rl<>	0.26	2.7	79.45	103,88	15
Benzo[a]pyrene	mg/kg-dry	<rl.< td=""><td>0.75</td><td>0.28</td><td><rl< td=""><td>2</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>5.8</td><td>2.6</td><td>1.5</td><td>1.9</td><td><rl< td=""><td><rl< td=""><td>0.16</td><td>2.2</td><td>7.94</td><td>69.85</td><td>1.5</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl.<>	0.75	0.28	<rl< td=""><td>2</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>5.8</td><td>2.6</td><td>1.5</td><td>1.9</td><td><rl< td=""><td><rl< td=""><td>0.16</td><td>2.2</td><td>7.94</td><td>69.85</td><td>1.5</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	2	<rl< td=""><td><rl< td=""><td><rl< td=""><td>5.8</td><td>2.6</td><td>1.5</td><td>1.9</td><td><rl< td=""><td><rl< td=""><td>0.16</td><td>2.2</td><td>7.94</td><td>69.85</td><td>1.5</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>5.8</td><td>2.6</td><td>1.5</td><td>1.9</td><td><rl< td=""><td><rl< td=""><td>0.16</td><td>2.2</td><td>7.94</td><td>69.85</td><td>1.5</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>5.8</td><td>2.6</td><td>1.5</td><td>1.9</td><td><rl< td=""><td><rl< td=""><td>0.16</td><td>2.2</td><td>7.94</td><td>69.85</td><td>1.5</td></rl<></td></rl<></td></rl<>	5.8	2.6	1.5	1.9	<rl< td=""><td><rl< td=""><td>0.16</td><td>2.2</td><td>7.94</td><td>69.85</td><td>1.5</td></rl<></td></rl<>	<rl< td=""><td>0.16</td><td>2.2</td><td>7.94</td><td>69.85</td><td>1.5</td></rl<>	0.16	2.2	7.94	69.85	1.5
Benzo[b]fluoranthene	mg/kg-dry	<rl< td=""><td>1.69</td><td>0.56</td><td><rl< td=""><td>3.9</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>9.5</td><td>4</td><td>2</td><td>2.5</td><td><rl< td=""><td><rl< td=""><td>0.21</td><td>3.3</td><td>79,45</td><td>354.98</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	1.69	0.56	<rl< td=""><td>3.9</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>9.5</td><td>4</td><td>2</td><td>2.5</td><td><rl< td=""><td><rl< td=""><td>0.21</td><td>3.3</td><td>79,45</td><td>354.98</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	3.9	<rl< td=""><td><rl< td=""><td><rl< td=""><td>9.5</td><td>4</td><td>2</td><td>2.5</td><td><rl< td=""><td><rl< td=""><td>0.21</td><td>3.3</td><td>79,45</td><td>354.98</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>9.5</td><td>4</td><td>2</td><td>2.5</td><td><rl< td=""><td><rl< td=""><td>0.21</td><td>3.3</td><td>79,45</td><td>354.98</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>9.5</td><td>4</td><td>2</td><td>2.5</td><td><rl< td=""><td><rl< td=""><td>0.21</td><td>3.3</td><td>79,45</td><td>354.98</td><td>15</td></rl<></td></rl<></td></rl<>	9.5	4	2	2.5	<rl< td=""><td><rl< td=""><td>0.21</td><td>3.3</td><td>79,45</td><td>354.98</td><td>15</td></rl<></td></rl<>	<rl< td=""><td>0.21</td><td>3.3</td><td>79,45</td><td>354.98</td><td>15</td></rl<>	0.21	3.3	79,45	354.98	15
Benzo[k]fluoranthene	mg/kg-dry	<rl< td=""><td>0.36</td><td></td><td><ril< td=""><td>0.78</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>2.3</td><td>1.3</td><td>0.89</td><td>1.4</td><td><rl.< td=""><td><rl< td=""><td><rl.< td=""><td>1.3</td><td>794.52</td><td>3759.12</td><td>150</td></rl.<></td></rl<></td></rl.<></td></rl<></td></rl<></td></rl<></td></ril<></td></rl<>	0.36		<ril< td=""><td>0.78</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>2.3</td><td>1.3</td><td>0.89</td><td>1.4</td><td><rl.< td=""><td><rl< td=""><td><rl.< td=""><td>1.3</td><td>794.52</td><td>3759.12</td><td>150</td></rl.<></td></rl<></td></rl.<></td></rl<></td></rl<></td></rl<></td></ril<>	0.78	<rl< td=""><td><rl< td=""><td><rl< td=""><td>2.3</td><td>1.3</td><td>0.89</td><td>1.4</td><td><rl.< td=""><td><rl< td=""><td><rl.< td=""><td>1.3</td><td>794.52</td><td>3759.12</td><td>150</td></rl.<></td></rl<></td></rl.<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>2.3</td><td>1.3</td><td>0.89</td><td>1.4</td><td><rl.< td=""><td><rl< td=""><td><rl.< td=""><td>1.3</td><td>794.52</td><td>3759.12</td><td>150</td></rl.<></td></rl<></td></rl.<></td></rl<></td></rl<>	<rl< td=""><td>2.3</td><td>1.3</td><td>0.89</td><td>1.4</td><td><rl.< td=""><td><rl< td=""><td><rl.< td=""><td>1.3</td><td>794.52</td><td>3759.12</td><td>150</td></rl.<></td></rl<></td></rl.<></td></rl<>	2.3	1.3	0.89	1.4	<rl.< td=""><td><rl< td=""><td><rl.< td=""><td>1.3</td><td>794.52</td><td>3759.12</td><td>150</td></rl.<></td></rl<></td></rl.<>	<rl< td=""><td><rl.< td=""><td>1.3</td><td>794.52</td><td>3759.12</td><td>150</td></rl.<></td></rl<>	<rl.< td=""><td>1.3</td><td>794.52</td><td>3759.12</td><td>150</td></rl.<>	1.3	794.52	3759.12	150
Benzo(g,h,i) perylene	mg/kg-dry					1.6	<rl< td=""><td><rl.< td=""><td><rl< td=""><td>4.2</td><td>1.6</td><td>0.91</td><td>1.2</td><td><rl.< td=""><td><ri_< td=""><td><rl.< td=""><td>1.6</td><td>NA</td><td>NA</td><td>NA</td></rl.<></td></ri_<></td></rl.<></td></rl<></td></rl.<></td></rl<>	<rl.< td=""><td><rl< td=""><td>4.2</td><td>1.6</td><td>0.91</td><td>1.2</td><td><rl.< td=""><td><ri_< td=""><td><rl.< td=""><td>1.6</td><td>NA</td><td>NA</td><td>NA</td></rl.<></td></ri_<></td></rl.<></td></rl<></td></rl.<>	<rl< td=""><td>4.2</td><td>1.6</td><td>0.91</td><td>1.2</td><td><rl.< td=""><td><ri_< td=""><td><rl.< td=""><td>1.6</td><td>NA</td><td>NA</td><td>NA</td></rl.<></td></ri_<></td></rl.<></td></rl<>	4.2	1.6	0.91	1.2	<rl.< td=""><td><ri_< td=""><td><rl.< td=""><td>1.6</td><td>NA</td><td>NA</td><td>NA</td></rl.<></td></ri_<></td></rl.<>	<ri_< td=""><td><rl.< td=""><td>1.6</td><td>NA</td><td>NA</td><td>NA</td></rl.<></td></ri_<>	<rl.< td=""><td>1.6</td><td>NA</td><td>NA</td><td>NA</td></rl.<>	1.6	NA	NA	NA
Chrysene	mg/kg-dry	<rl< td=""><td>1.58</td><td></td><td><rl< td=""><td>3.2</td><td><rl< td=""><td><rl,< td=""><td><rl.< td=""><td>7.4</td><td>3.2</td><td>2</td><td>2.7</td><td><rl< td=""><td><rl< td=""><td>0.34</td><td>2.8</td><td>7945.21</td><td>10000</td><td>1500</td></rl<></td></rl<></td></rl.<></td></rl,<></td></rl<></td></rl<></td></rl<>	1.58		<rl< td=""><td>3.2</td><td><rl< td=""><td><rl,< td=""><td><rl.< td=""><td>7.4</td><td>3.2</td><td>2</td><td>2.7</td><td><rl< td=""><td><rl< td=""><td>0.34</td><td>2.8</td><td>7945.21</td><td>10000</td><td>1500</td></rl<></td></rl<></td></rl.<></td></rl,<></td></rl<></td></rl<>	3.2	<rl< td=""><td><rl,< td=""><td><rl.< td=""><td>7.4</td><td>3.2</td><td>2</td><td>2.7</td><td><rl< td=""><td><rl< td=""><td>0.34</td><td>2.8</td><td>7945.21</td><td>10000</td><td>1500</td></rl<></td></rl<></td></rl.<></td></rl,<></td></rl<>	<rl,< td=""><td><rl.< td=""><td>7.4</td><td>3.2</td><td>2</td><td>2.7</td><td><rl< td=""><td><rl< td=""><td>0.34</td><td>2.8</td><td>7945.21</td><td>10000</td><td>1500</td></rl<></td></rl<></td></rl.<></td></rl,<>	<rl.< td=""><td>7.4</td><td>3.2</td><td>2</td><td>2.7</td><td><rl< td=""><td><rl< td=""><td>0.34</td><td>2.8</td><td>7945.21</td><td>10000</td><td>1500</td></rl<></td></rl<></td></rl.<>	7.4	3.2	2	2.7	<rl< td=""><td><rl< td=""><td>0.34</td><td>2.8</td><td>7945.21</td><td>10000</td><td>1500</td></rl<></td></rl<>	<rl< td=""><td>0.34</td><td>2.8</td><td>7945.21</td><td>10000</td><td>1500</td></rl<>	0.34	2.8	7945.21	10000	1500
Dibenz[a,h]anthracene	mg/kg-dry	<rl< td=""><td></td><td></td><td><rl< td=""><td>0.31</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.8</td><td>0.34</td><td>0.18</td><td>0.16</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.34</td><td>7.95</td><td>69.86</td><td>1.5</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>			<rl< td=""><td>0.31</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.8</td><td>0.34</td><td>0.18</td><td>0.16</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.34</td><td>7.95</td><td>69.86</td><td>1.5</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	0.31	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.8</td><td>0.34</td><td>0.18</td><td>0.16</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.34</td><td>7.95</td><td>69.86</td><td>1.5</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.8</td><td>0.34</td><td>0.18</td><td>0.16</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.34</td><td>7.95</td><td>69.86</td><td>1.5</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.8</td><td>0.34</td><td>0.18</td><td>0.16</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.34</td><td>7.95</td><td>69.86</td><td>1.5</td></rl<></td></rl<></td></rl<></td></rl<>	0.8	0.34	0.18	0.16	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.34</td><td>7.95</td><td>69.86</td><td>1.5</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.34</td><td>7.95</td><td>69.86</td><td>1.5</td></rl<></td></rl<>	<rl< td=""><td>0.34</td><td>7.95</td><td>69.86</td><td>1.5</td></rl<>	0.34	7.95	69.86	1.5
Fluoranthene	mg/kg-dry	<rl< td=""><td>0.64</td><td>0.59</td><td><rl< td=""><td>6.4</td><td><rl< td=""><td><rl.< td=""><td><rl< td=""><td>17</td><td>8.8</td><td>4.9</td><td>6.4</td><td><rl.< td=""><td><ri_< td=""><td>0.28</td><td>4.9</td><td>10000</td><td>10000</td><td>2000</td></ri_<></td></rl.<></td></rl<></td></rl.<></td></rl<></td></rl<></td></rl<>	0.64	0.59	<rl< td=""><td>6.4</td><td><rl< td=""><td><rl.< td=""><td><rl< td=""><td>17</td><td>8.8</td><td>4.9</td><td>6.4</td><td><rl.< td=""><td><ri_< td=""><td>0.28</td><td>4.9</td><td>10000</td><td>10000</td><td>2000</td></ri_<></td></rl.<></td></rl<></td></rl.<></td></rl<></td></rl<>	6.4	<rl< td=""><td><rl.< td=""><td><rl< td=""><td>17</td><td>8.8</td><td>4.9</td><td>6.4</td><td><rl.< td=""><td><ri_< td=""><td>0.28</td><td>4.9</td><td>10000</td><td>10000</td><td>2000</td></ri_<></td></rl.<></td></rl<></td></rl.<></td></rl<>	<rl.< td=""><td><rl< td=""><td>17</td><td>8.8</td><td>4.9</td><td>6.4</td><td><rl.< td=""><td><ri_< td=""><td>0.28</td><td>4.9</td><td>10000</td><td>10000</td><td>2000</td></ri_<></td></rl.<></td></rl<></td></rl.<>	<rl< td=""><td>17</td><td>8.8</td><td>4.9</td><td>6.4</td><td><rl.< td=""><td><ri_< td=""><td>0.28</td><td>4.9</td><td>10000</td><td>10000</td><td>2000</td></ri_<></td></rl.<></td></rl<>	17	8.8	4.9	6.4	<rl.< td=""><td><ri_< td=""><td>0.28</td><td>4.9</td><td>10000</td><td>10000</td><td>2000</td></ri_<></td></rl.<>	<ri_< td=""><td>0.28</td><td>4.9</td><td>10000</td><td>10000</td><td>2000</td></ri_<>	0.28	4.9	10000	10000	2000
Fluorene	mg/kg-dry	<rl< td=""><td></td><td></td><td><ri_< td=""><td>0.22</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.71</td><td>0.35</td><td>0.2</td><td>0.29</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.26</td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></ri_<></td></rl<>			<ri_< td=""><td>0.22</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.71</td><td>0.35</td><td>0.2</td><td>0.29</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.26</td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></ri_<>	0.22	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.71</td><td>0.35</td><td>0.2</td><td>0.29</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.26</td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.71</td><td>0.35</td><td>0.2</td><td>0.29</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.26</td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.71</td><td>0.35</td><td>0.2</td><td>0.29</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.26</td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<></td></rl<>	0.71	0.35	0.2	0.29	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.26</td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.26</td><td>10000</td><td>10000</td><td>2000</td></rl<></td></rl<>	<rl< td=""><td>0.26</td><td>10000</td><td>10000</td><td>2000</td></rl<>	0.26	10000	10000	2000
Indeno[1,2,3-cd]pyrene	mg/kg-dry	<rl< td=""><td></td><td></td><td><rl< td=""><td>1.3</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>3.5</td><td>1.3</td><td>0.72</td><td>0.97</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1.4</td><td>79.45</td><td>629.17</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>			<rl< td=""><td>1.3</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>3.5</td><td>1.3</td><td>0.72</td><td>0.97</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1.4</td><td>79.45</td><td>629.17</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	1.3	<rl< td=""><td><rl< td=""><td><rl< td=""><td>3.5</td><td>1.3</td><td>0.72</td><td>0.97</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1.4</td><td>79.45</td><td>629.17</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>3.5</td><td>1.3</td><td>0.72</td><td>0.97</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1.4</td><td>79.45</td><td>629.17</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>3.5</td><td>1.3</td><td>0.72</td><td>0.97</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>1.4</td><td>79.45</td><td>629.17</td><td>15</td></rl<></td></rl<></td></rl<></td></rl<>	3.5	1.3	0.72	0.97	<rl< td=""><td><rl< td=""><td><rl< td=""><td>1.4</td><td>79.45</td><td>629.17</td><td>15</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>1.4</td><td>79.45</td><td>629.17</td><td>15</td></rl<></td></rl<>	<rl< td=""><td>1.4</td><td>79.45</td><td>629.17</td><td>15</td></rl<>	1.4	79.45	629.17	15
Naphthalene	mg/kg-dry	<rl< td=""><td>0.93</td><td></td><td><rl< td=""><td>0.19</td><td><rl< td=""><td><rl< td=""><td><rl.< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><ri.< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>170</td></rl<></td></rl<></td></rl<></td></ri.<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl.<></td></rl<></td></rl<></td></rl<></td></rl<>	0.93		<rl< td=""><td>0.19</td><td><rl< td=""><td><rl< td=""><td><rl.< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><ri.< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>170</td></rl<></td></rl<></td></rl<></td></ri.<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl.<></td></rl<></td></rl<></td></rl<>	0.19	<rl< td=""><td><rl< td=""><td><rl.< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><ri.< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>170</td></rl<></td></rl<></td></rl<></td></ri.<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl.<></td></rl<></td></rl<>	<rl< td=""><td><rl.< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><ri.< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>170</td></rl<></td></rl<></td></rl<></td></ri.<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl.<></td></rl<>	<rl.< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><ri.< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>170</td></rl<></td></rl<></td></rl<></td></ri.<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl.<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><ri.< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>170</td></rl<></td></rl<></td></rl<></td></ri.<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><ri.< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>170</td></rl<></td></rl<></td></rl<></td></ri.<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><ri.< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>170</td></rl<></td></rl<></td></rl<></td></ri.<></td></rl<></td></rl<>	<rl< td=""><td><ri.< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>170</td></rl<></td></rl<></td></rl<></td></ri.<></td></rl<>	<ri.< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>170</td></rl<></td></rl<></td></rl<></td></ri.<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>170</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>10000</td><td>10000</td><td>170</td></rl<></td></rl<>	<rl< td=""><td>10000</td><td>10000</td><td>170</td></rl<>	10000	10000	170
Phenanthrene	mg/kg-dry	<rl< td=""><td>1.17</td><td>0.36</td><td><rl< td=""><td>3.2</td><td><rl< td=""><td><rl.< td=""><td><rl< td=""><td>8</td><td>4</td><td>2.7</td><td>3.9</td><td><rl< td=""><td><rl< td=""><td>0.2</td><td>2.6</td><td>NA</td><td>NA</td><td>170</td></rl<></td></rl<></td></rl<></td></rl.<></td></rl<></td></rl<></td></rl<>	1.17	0.36	<rl< td=""><td>3.2</td><td><rl< td=""><td><rl.< td=""><td><rl< td=""><td>8</td><td>4</td><td>2.7</td><td>3.9</td><td><rl< td=""><td><rl< td=""><td>0.2</td><td>2.6</td><td>NA</td><td>NA</td><td>170</td></rl<></td></rl<></td></rl<></td></rl.<></td></rl<></td></rl<>	3.2	<rl< td=""><td><rl.< td=""><td><rl< td=""><td>8</td><td>4</td><td>2.7</td><td>3.9</td><td><rl< td=""><td><rl< td=""><td>0.2</td><td>2.6</td><td>NA</td><td>NA</td><td>170</td></rl<></td></rl<></td></rl<></td></rl.<></td></rl<>	<rl.< td=""><td><rl< td=""><td>8</td><td>4</td><td>2.7</td><td>3.9</td><td><rl< td=""><td><rl< td=""><td>0.2</td><td>2.6</td><td>NA</td><td>NA</td><td>170</td></rl<></td></rl<></td></rl<></td></rl.<>	<rl< td=""><td>8</td><td>4</td><td>2.7</td><td>3.9</td><td><rl< td=""><td><rl< td=""><td>0.2</td><td>2.6</td><td>NA</td><td>NA</td><td>170</td></rl<></td></rl<></td></rl<>	8	4	2.7	3.9	<rl< td=""><td><rl< td=""><td>0.2</td><td>2.6</td><td>NA</td><td>NA</td><td>170</td></rl<></td></rl<>	<rl< td=""><td>0.2</td><td>2.6</td><td>NA</td><td>NA</td><td>170</td></rl<>	0.2	2.6	NA	NA	170
Pyrene	mg/kg-dry	<rl< td=""><td>1.54</td><td>0.54</td><td><rl< td=""><td>5.2</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>14</td><td>6.3</td><td>4</td><td>4.9</td><td><rl< td=""><td><rl.< td=""><td>0.32</td><td>5.1</td><td>1000</td><td>10000</td><td>2000</td></rl.<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	1.54	0.54	<rl< td=""><td>5.2</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>14</td><td>6.3</td><td>4</td><td>4.9</td><td><rl< td=""><td><rl.< td=""><td>0.32</td><td>5.1</td><td>1000</td><td>10000</td><td>2000</td></rl.<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	5.2	<rl< td=""><td><rl< td=""><td><rl< td=""><td>14</td><td>6.3</td><td>4</td><td>4.9</td><td><rl< td=""><td><rl.< td=""><td>0.32</td><td>5.1</td><td>1000</td><td>10000</td><td>2000</td></rl.<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>14</td><td>6.3</td><td>4</td><td>4.9</td><td><rl< td=""><td><rl.< td=""><td>0.32</td><td>5.1</td><td>1000</td><td>10000</td><td>2000</td></rl.<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>14</td><td>6.3</td><td>4</td><td>4.9</td><td><rl< td=""><td><rl.< td=""><td>0.32</td><td>5.1</td><td>1000</td><td>10000</td><td>2000</td></rl.<></td></rl<></td></rl<>	14	6.3	4	4.9	<rl< td=""><td><rl.< td=""><td>0.32</td><td>5.1</td><td>1000</td><td>10000</td><td>2000</td></rl.<></td></rl<>	<rl.< td=""><td>0.32</td><td>5.1</td><td>1000</td><td>10000</td><td>2000</td></rl.<>	0.32	5.1	1000	10000	2000
DRY WEIGHT																				
DRY WEIGHT	wt%	90.8	95	93.2	98.6	85	94.7	95.3	94.8	90.9	89	90	94.4	86	93.4	91.2	91.2			

Source: Results from samples collected in 2001 were obtained from Table 2, Initial Phase II for the Studebaker Area A Properties by Hull and Associates dated December 2001

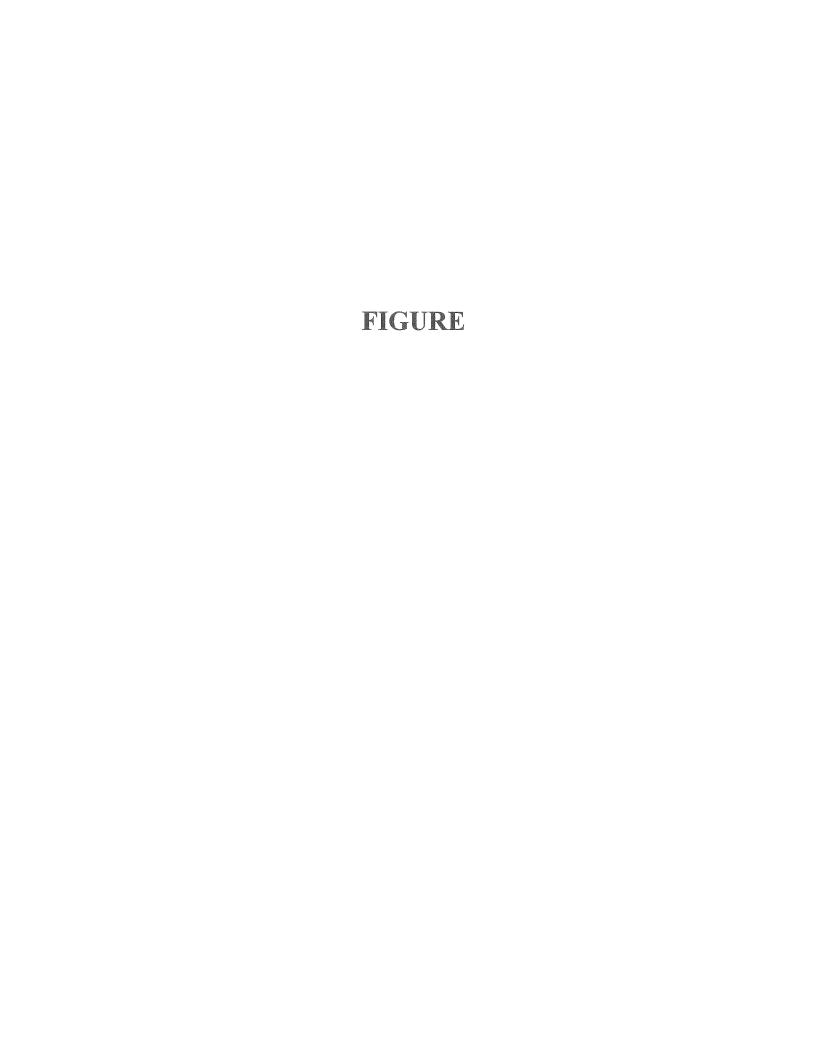
Notes: NA - Data Not Available

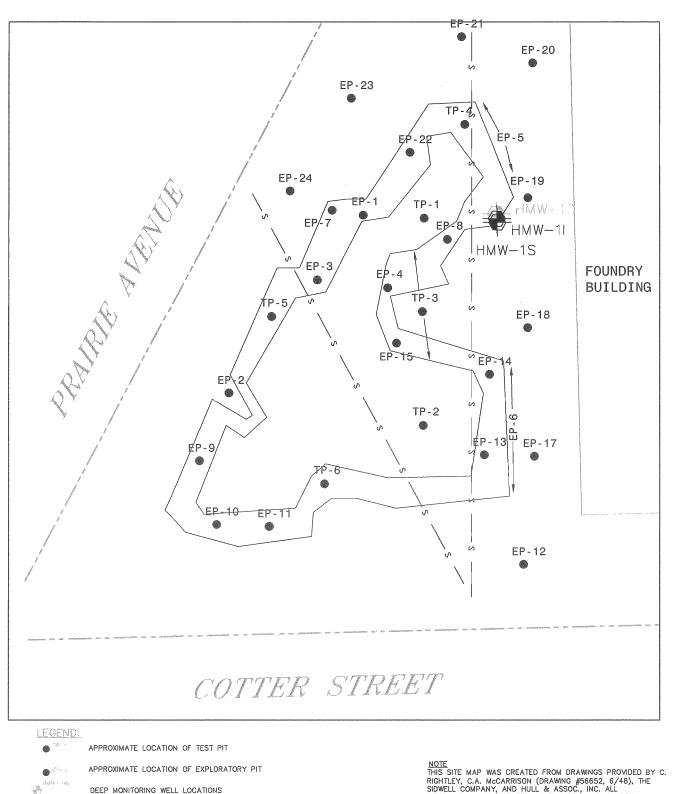
RL - Reporting Limit

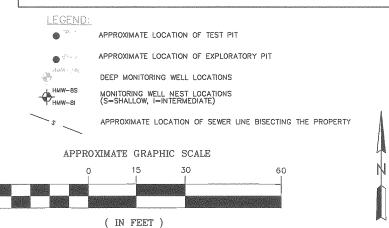
Surface Soil - Defined as the upper two feet of the soil column. Subsurface Soil - Defined as the soil below a depth of two feet.

1996 Cleanup Critera from 1996 VRP Resource Guide Tables 9, 10, and 14

RISC Cleanup Criteria from RISC Technical Guide Appendix 1 (Updated September 9, 2009)


RCRA hazardous waste criteria for lead and arsenic is 5 mg/l.


Sample concentration exceeding 1996 Tier II Nonresidential Criteria Sample concentration exceeding RISC Industrial Default Cleanup Criteria


TEST/EXPLORATORY PIT DESCRIPTION FORMER STUDEBAKER FOUNDRY BUILDING FEBRUARY 4, 2010 TABLE 2

Location	Description	Total Depth of Excavation (from ground surface)
12	No debris	5.
TP-2	No debris	25
TP-3	Brick, cans, cups, rubber mats, tarp, bottles, metal scraps, glass, wires, metal conduit, leather scraps and concrete blocks	7.
TP-4	metal scraps chains, plastic and bricks	12
TP-5	No debris	-9
TP-6	Barrel lids, conduit, metal stripping, concrete blocks, tires, glass, empty 55 gallon drum,	-9
	christmas decorations, wood blocks and concrete slabs	QJ.
<u>Б</u>	conduit bricks, wiring, empty 10 gal can of prestone, wood bricks, conduit, metal scraps, and rubber tubing	3,
EP-2	No debris, possibly stockpiled topsoil	2'
EP-3	No debris	3,
EP-4	Brick, cans, cups, rubber mats, tarp, bottles, metal scraps, lids, glass, wires, and metal conduit	5'
EP-5	concrete	2,
EP-6	metal fencing scraps	2'
EP-7	wood bricks, tire, and tubing	Q.
EP-8	Smoke stack part, rubber belts, electrical wiring (with plugs) metal strips, and chains	QĨ
EP-9	No debris	'4
EP-10	No debris	'4
<u>Т</u>	No debris	4'
EP-12	No debris	'4
EP-13	No debris	5.
EP-14	No debris	52.
EP-15	copper strips, empty metal buckets	2,
EP-16	Pea gravel	3.
EP-17	No debris	5.
EP-18	No debris, encountered old sidewalk	2,
EP-19	No debris, encountered old sidewalk	2'
EP-20	No debris, encountered old sidewalk	2'
EP-21	Large quantity of bricks and some piping	,9
EP-22	Bricks, wire, metal conduit	5.
EP-23	No debris, possibly stockpiled topsoil	3.
EP-24	No debris, possibly stockpiled topsoil	3'

TP Test Pit - Soil samples collected for analysis EP Exploratory Pit - No soil samples collected for analysis

1 inch = 30 ft.

NOTE
THIS SITE MAP WAS CREATED FROM DRAWINGS PROVIDED BY C.
RIGHTLEY, C.A. MCCARRISON (DRAWING #56652, 6/48), THE
SIDWELL COMPANY, AND HULL & ASSOC, INC. ALL
INFORMATION REPRESENTED ON THIS DRAWING IS APPROXIMATE
AND SHOULD BE USED FOR GENERAL PURPOSES ONLY.

TEST PIT LOCATION MAP FORMER STUDEBAKER FOUNDRY 1100 PRAIRIE AVENUE SOUTH BEND, IN

Weaver Boos Consultants 4085 MEGHAN BEELER COURT SOUTH BEND, IN 46628 (574) 271-3447

III AND COLOR OF THE PERSON OF	DRAWN BY: RMD	DATE: 1/15/2010	FILE: 0058-373-01
Minimipania	REVIEWED BY: ES	CAD: SITELOC.DWG	FIGURE 1

ANALYTICAL LABORATORY REPORT

February 24, 2010

Ed Stefanek Weaver Boos Consultants, LLC 4085 Meghan Beeler Court South Bend, IN 46628

RE: South Bend, Indiana

Dear Ed Stefanek:

Microbac Laboratories, Inc. received 12 samples on 2/5/2010 1:00:00 PM for the analyses presented in the following report.

The enclosed results were obtained from and are applicable to the sample(s) as received at the laboratory. All sample results are reported on an "as received" basis unless otherwise noted.

Work Order No.: ME1002212

All data included in this report have been reviewed and meet the applicable project specific and certification specific requirements, unless otherwise noted. A qualifications page is included in this report and lists the programs under which Microbac maintains certification.

This report has been paginated in its entirety and shall not be reproduced except in full, without the written approval of Microbac Laboratories.

We appreciate the opportunity to service your analytical needs. If you have any questions, please feel free to contact us.

Sincerely,

Microbac Laboratories, Inc.

Ronald J. Misiunas Client Services Manager

Enclosures

WORK ORDER SAMPLE SUMMARY

CLIENT: Weaver Boos Consultants, LLC

Project: South Bend, Indiana

Lab Order: ME1002212

Client Sample ID	Tag Number	Collection Date	Date Received
TP - 1 @ 0 - 2'		2/4/2010 10:10:00 AM	2/5/2010
TP - 1 @ 4 - 5'		2/4/2010 10:15:00 AM	2/5/2010
TP - 2 @ 0 - 2'		2/4/2010 10:43:00 AM	2/5/2010
TP - 2 @ 4 - 5'		2/4/2010 10:52:00 AM	2/5/2010
TP - 3 @ 0 - 2'		2/4/2010 11:15:00 AM	2/5/2010
TP - 3 @ 4 - 5'		2/4/2010 11:22:00 AM	2/5/2010
TP - 4 @ 0 - 2'		2/4/2010 11:28:00 AM	2/5/2010
TP - 4 @ 4 - 5'		2/4/2010 11:34:00 AM	2/5/2010
TP - 5 @ 0 - 2'		2/4/2010 10:20:00 AM	2/5/2010
TP - 5 @ 4 - 5'		2/4/2010 10:25:00 AM	2/5/2010
TP - 6 @ 0 - 2'		2/4/2010 10:30:00 AM	2/5/2010
TP - 6 @ 4 - 5'		2/4/2010 10:37:00 AM	2/5/2010
	TP - 1 @ 0 - 2' TP - 1 @ 4 - 5' TP - 2 @ 0 - 2' TP - 2 @ 4 - 5' TP - 3 @ 0 - 2' TP - 3 @ 4 - 5' TP - 4 @ 0 - 2' TP - 5 @ 0 - 2' TP - 5 @ 4 - 5' TP - 6 @ 0 - 2'	TP - 1 @ 0 - 2' TP - 1 @ 4 - 5' TP - 2 @ 0 - 2' TP - 2 @ 4 - 5' TP - 3 @ 0 - 2' TP - 3 @ 4 - 5' TP - 4 @ 0 - 2' TP - 5 @ 0 - 2' TP - 5 @ 0 - 2' TP - 6 @ 0 - 2'	TP - 1 @ 0 - 2' TP - 1 @ 4 - 5' 2/4/2010 10:10:00 AM TP - 2 @ 0 - 2' 2/4/2010 10:15:00 AM TP - 2 @ 4 - 5' 2/4/2010 10:52:00 AM TP - 3 @ 0 - 2' 2/4/2010 11:15:00 AM TP - 3 @ 4 - 5' 2/4/2010 11:22:00 AM TP - 4 @ 0 - 2' 2/4/2010 11:28:00 AM TP - 5 @ 0 - 2' 2/4/2010 10:20:00 AM TP - 5 @ 0 - 2' 2/4/2010 10:20:00 AM TP - 6 @ 0 - 2' 2/4/2010 10:25:00 AM

Date: Wednesday, February 24, 2010

PERCENT MOISTURE

Percent Moisture

Date: Wednesday, February 24, 2010 Client: Weaver Boos Consultants, LLC Client Project: South Bend, Indiana Client Sample ID: TP-1@0-2' Work Order / ID: ME1002212-01 Sample Description: Collection Date: 02/04/10 10:10 Sample Matrix: Solid Date Received: 02/05/10 13:00 STResult RL Analyses Qual Units DF Analyzed Method: SW6010B TOTAL METALS Prep Date/Time: 02/08/10 08:30 Analyst: SAA 14 Arsenic A 0.57 02/09/10 15:52 mg/Kg-dry Lead 480 0.42 mg/Kg-dry 02/09/10 15:52 TCLP METALS Method: SW1311/6010B Prep Date/Time: 02/15/10 08:33 Analyst: SAA 02/15/10 19:01 Lead A 0.090 0.0075 mg/L Method: SW8270C PAH BY GC/MS Prep Date/Time: 02/08/10 08:14 Analyst: CLR 0.26 0.18 Acenaphthene A mg/Kg-dry 02/09/10 16:46 A ND Acenaphthylene 0.18 mg/Kg-dry 02/09/10 16:46 Anthracene 0.58 0.18 mg/Kg-dry 02/09/10 16:46 2.9 0.18 Benzo[a]anthracene mg/Kg-dry 02/09/10 16:46 Benzo[a]pyrene A 2.0 0.18 mg/Kg-dry 02/09/10 16:46 3.9 Benzo[b]fluoranthene A 0.18 mg/Kg-dry 1 02/09/10 16:46 Benzo[g,h,i]perylene A 1.6 0.18 mg/Kg-dry 1 02/09/10 16:46 Benzo[k]fluoranthene 0.78 0.18 mg/Kg-dry 1 02/09/10 16:46 3.2 Chrysene Δ 0.18 mg/Kg-dry 02/09/10 16:46 1 0.31 Dibenz[a,h]anthracene Ā 0.18 mg/Kg-dry 02/09/10 16:46 Fluoranthene Α 6.4 0.18 mg/Kg-dry 02/09/10 16:46 Α 0.22 0.18 Fluorene mg/Kg-dry 02/09/10 16:46 Indeno[1,2,3cd]pyrene Α 1.3 0.18 mg/Kg-dry 02/09/10 16:46 0.19 Naphthalene Α 0.18 mg/Kg-dry 1 02/09/10 16:46 Phenanthrene Α 3.2 0.18 mg/Kg-dry 1 02/09/10 16:46 Â 5.2 Pyrene 0.18 mg/Kg-dry 02/09/10 16:46 Surr: Nitrobenzene-d5 S 86.4 14.2-125 %REC 02/09/10 16:46 Surr: 2-Fluorobiphenvl S 86.9 21.6-112 %REC 02/09/10 16:46 S 99.5 10-139 02/09/10 16:46 Surr: Terphenyl-d14 %REC 1

Prep Date/Time:

WT%

0.10

Method: 2540B_18ED

A 15

Analyst: SMA

Client: Weaver Boos Consultants, LLC

Client Project: South Bend, Indiana

Client Samule ID: TP - 1 @ 4 - 5'

Work Order / TD:

Date:

ME1002212.02

Wednesday, February 24, 2010

Client Sample ID: Sample Description: Sample Matrix:	TP - 1 @ 4 - 5' Solid				Work Order / ID: Collection Date: Date Received:		ME1002212-02 02/04/10 10:15 02/05/10 13:00
Analyses		ST	Result	RL	Qual Units	DF	Analyzed
TOTAL METALS	Method	SW6010B		Pre	ep Date/Time: 02/0 8/1	0 08:3	30 Analyst: SAA
Arsenic		A 2	.7	0.49	mg/Kg-dry	1	02/09/10 15:57
Lead		А 3	.2	0.37	mg/Kg-dry	1	02/09/10 15:57
PAH BY GC/MS	Method	SW8270C		Pre	ep Date/Time: 02/08/1	0 08:1	4 Analyst: CLR
Acenaphthene		A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Acenaphthylene		Α	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Anthracene		Α	ND	0.16	mg/Kg-dry	-1	02/09/10 12:50
Benzo[a]anthracene		Α	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Benzo[a]pyrene		Α	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Benzo[b]fluoranthene		A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Benzo[g,h,i]perylene		Α	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Benzo[k]fluoranthene		А	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Chrysene		A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Dibenz[a,h]anthracene		A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Fluoranthene		Α	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Fluorene		A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Indeno[1,2,3cd]pyrene		Α	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Naphthalene		Α	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Phenanthrene		A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Pyrene		A	ND	0.16	mg/Kg-dry	1	02/09/10 12:50
Surr: Nitrobenzene-d	5	S 5	5.3	14.2-125	%REC	†	02/09/10 12:50
Surr: 2-Fluorobipheny	yl .	S 7	3.0	21.6-112	%REC	†	02/09/10 12:50
Surr: Terphenyl-d14		S 9	0.4	10-139	%REC	1	02/09/10 12:50
PERCENT MOISTURE	Method	2540B_18E	ED.	Pre	ep Date/Time:		Analyst: SMA
Percent Moisture		A 5	i. 3	0.10	WT%	1	02/05/10 14:07

Weaver Boos Consultants, LLC

Client Project: South Bend, Indiana

Client Sample ID: TP - 2 @ 0 - 2'

Sample Description:

Client:

imple Description:

Work Order / ID: ME1002212-03
Collection Date: 02/04/10 10:43
Date Received: 02/05/10 13:00

Wednesday, February 24, 2010

Date:

Sample Matrix: Solid							ection Date: e Received:		02/04/10 10:43 02/05/10 13:00
Analyses		ST		Result	RL	Qual	Units	DF	Analyzed
TOTAL METALS	Method:	SW6010	ıR		Dr	en Date/	Time: 02/08/1	n ng.s	80 Analyst: SAA
Arsenic	1110011001	A	2.0		0.43	op Dator	mg/Kg-dry	1	02/09/10 16:09
Lead		Α	11		0.32		mg/Kg-dry	1	02/09/10 16:09
PAH BY GC/MS	Method:	SW8270	C		Pro	ep Date/	Time: 02/08/1	0 08:1	14 Analyst: CLR
Acenaphthene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 15:13
Acenaphthylene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 15:13
Anthracene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 15:13
Benzo[a]anthracene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 15:13
Benzo[a]pyrene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 15:13
Benzo[b]fluoranthene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 15:13
Benzo[g,h,i]perylene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 15:13
Benzo[k]fluoranthene		Â		ND	0.16		mg/Kg-dry	1	02/09/10 15:13
Chrysene		A		ND	0.16		mg/Kg-dry	1	02/09/10 15:13
Dibenz[a,h]anthracene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 15:13
Fluoranthene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 15:13
Fluorene		A		ND	0.16		mg/Kg-dry	1	02/09/10 15:13
Indeno[1,2,3cd]pyrene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 15:13
iNaphthalene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 15:13
Phenanthrene		A		ND	0.16		mg/Kg-dry	i	02/09/10 15:13
Pyrene		A		ND	0.16		mg/Kg-dry	1	02/09/10 15:13
Surr: Nitrobenzene-d5		S	61.1		14.2-125		%REC	1	02/09/10 15:13
Surr: 2-Fluorobiphenyl		S	87.0		21.6-112		%REC	1	02/09/10 15:13
Surr: Terphenyl-d14		S	102		10-139		%REC	1	02/09/10 15:13
PERCENT MOISTURE	Method:	2540B_1	18ED		Pr	ep Date/	Time:		Analyst: SMA
Percent Moisture		A	4.7		0.10		WT%	1	02/05/10 14:07

Date: Wednesday, February 24, 2010

Client:

Weaver Boos Consultants, LLC

A 5.2

Client Project:

South Bend, Indiana

Client Sample ID:

TP - 2 @ 4 - 5'

Sannia Descriptions

Percent Moisture

Work Order / ID:

0.10 WT%

ME1002212-04 02/04/10 10:52

Sample Description: Sample Matrix: Solid						Collection Date: Date Received:			02/04/10 10:52 02/05/10 13:00		
Analyses		ST		Result	RL	Qual	Units	DF	Analyzed		
TOTAL METALS	Method:	SW6010	23			ep Date/			a Analyst: SAA		
Arsenic			2.0		0.48		mg/Kg-dry	1	02/09/10 16:15		
Lead		A	3.3		0.36		mg/Kg-dry	1	02/09/10 16:15		
PAH BY GC/MS	Method:	SW8270	C		Pr	ep Date/	Time: 02/08/1	0 08:1	4 Analyst: CLR		
Acenaphthene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 14:02		
Acenaphthylene		А		ND	0.16		mg/Kg-dry	1	02/09/10 14:02		
Anthracene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 14:02		
Benzo[a]anthracene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 14:02		
Benzo[a]pyrene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 14:02		
Benzo[b]fluoranthene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 14:02		
Benzo[g,h,i]perylene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 14:02		
Benzo[k]fluoranthene		A		ND	0.16		mg/Kg-dry	7	02/09/10 14:02		
Chrysene		A		ND	0.16		mg/Kg-dry	1	02/09/10 14:02		
Dibenz[a,h]anthracene		А		ND	0.16		mg/Kg-dry	1	02/09/10 14:02		
Fluoranthene		Â		ND	0.16		mg/kg-dry	1	02/09/10 14:02		
Fluorene	J	Â		ND	0.16		mg/Kg-dry	1	02/09/10 14:02		
Indeno[1,2,3cd]pyrene		Á		ND	0.16		mg/Kg-dry	1	02/09/10 14:02		
Naphthalene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 14:02		
Phenanthrene		Â		ND	0.16		mg/Kg-dry	1	02/09/10 14:02		
Pyrene		À		ND	0.16		mg/Kg-dry	1	02/09/10 14:02		
Surr: Nitrobenzene-d5		S	74.3		14.2-125		%REC	1	02/09/10 14:02		
Surr: 2-Fluorobiphenyl		S	79.8	}	21.6-112		%REC	1	02/09/10 14:02		
Surr: Terphenyl-d14		S	100		10-139		%REC	1	02/09/10 14:02		
PERCENT MOISTURE	Method:	2540B_	18ED		Þı	ep Date/	Time:		Analyst: SMA		
, mindered motor office	1				0.10	-12 - 4101	14/770/		00/05/40 44/07		

Client: Weaver Boos Consultants, LLC

Client Project: South Bend, Indiana

Client Sample ID: TP - 3 @ 0 - 2'

Sample Description:

Percent Moisture

Sample Matrix: Solid

Work Order / ID: Collection Date:

Date:

0.10 WT%

ME1002212-05 02/04/10 11:15

Wednesday, February 24, 2010

Date Received:

02/05/10 13:00

Analyses	ST	Result	RL	Qual	Units	DF	Analyzed

TOTAL METALO	Mathada	SW6010	, D		Oran D	ate/Time: 02/ 08/10		00 Applyot CAA
TOTAL METALS Arsenic	wethou.	SW0010	9.9		0.53	mg/Kg-dry	08:	30 Analyst: SAA 02/09/10 16:20
Lead		A	79		0.40	mg/Kg-dry	1	02/09/10 16:20
						3 0 7		
PAH BY GC/MS	Method:	SW8270	C		Prep D	ate/Time: 02/08/10	0 08:	14 Analyst: CLR
Acenaphthene		A	0.63		0.16	mg/Kg-dry	1	02/09/10 17:09
Acenaphthylene		A		ND	0.16	mg/Kg-dry	1	02/09/10 17:09
Anthracene		A	1.7		0.16	mg/Kg-dry	1	02/09/10 17:09
Benzo[a]anthracene		Α	8.1		0.16	mg/Kg-dry	1	02/09/10 17:09
Benzo[a]pyrene		Α	5.8		0.16	mg/Kg-dry	1	02/09/10 17:09
Benzo[b]fluoranthene		А	9.5		0.16	mg/Kg-dry	1	02/09/10 17:09
Benzo[g,h,i]perylene		Α	4.2		0.16	mg/Kg-dry	1	02/09/10 17:09
Benzo[k]fluoranthene		А	2.3		0.16	mg/Kg-dry	1	02/09/10 17:09
Chrysene		Α	7.4		0.16	mg/Kg-dry	- 14	02/09/10 17:09
Dibenz[a,h]anthracene		Α	0.80		0.16	mg/Kg-dry	1	02/09/10 17:09
Fluoranthene		À	17		0.16	mg/Kg-dry	1	02/09/10 17:09
Fluorene		Α	0.71		0.16	mg/Kg-dry	1	02/09/10 17:09
Indeno[1,2,3cd]pyrene		Α	3.5		0.16	mg/Kg-dry	1	02/09/10 17:09
Maphthalene		Α		ND	0.16	mg/Kg-dry	1	02/09/10 17:09
Phenanthrene		Α	8.0		0.16	mg/Kg-dry	1	02/09/10 17:09
Pyrene		Á	14		0.16	mg/Kg-dry	1	02/09/10 17:09
Surr: Nitrobenzene-d5		S	86.1		14.2-125	%REC	1	02/09/10 17:09
Surr: 2-Fluorobiphenyl		S	78.1		21.6-112	%REC	1	02/09/10 17:09
Surr: Terphenyl-d14		S	97.1		10-139	%REC	1	02/09/10 17:09
PERCENT MOISTURE	Method: 2540B 18ED				Prep D	Analyst: SMA		

A 9.1

Wednesday, February 24, 2010 Date:

Client: Weaver Boos Consultants, LLC

Client Project: South Bend, Indiana

Client Sample ID: TP - 3 @ 4 - 5'

Work Order / ID:

ME1002212-06

Sample Description: Sample Matrix: Solid							ction Date: e Received:	02/04/10 11:22 02/05/10 13:00	
Analyses		ST		Result	RL	Qual	Units	DF	Analyzed
TOTAL METALS	Method:	SW6010	В		Pro	ep Date/	Time: 02/08/1	0 08:3	0 Analyst: SAA
Arsenic		Α	11		0.46		mg/Kg-dry	1	02/09/10 16:26
Lead		A	250		0.35		mg/Kg-áry	1	02/09/10 16:26
PAH BY GC/MS	Method:	8W8270	Ċ		Pro	ep Date/	Time: 02/08/10	0 08:1	4 Analyst: CLR
Acenaphthene		Α	0.32		0.17		mg/Kg-dry	1	02/09/10 17:33
Acenaphthylene		Α		ND	0.17		mg/Kg-dry	1	02/09/10 17:33
Anthracene		Α	0.79		0.17		mg/Kg-dry	1	02/09/10 17:33
Benzo[a]anthracene		Α	3.1		0.17		mg/Kg-dry	1	02/09/10 17:33
Benzo[a]pyrene		Α	2.6		0.17		mg/Kg-dry	1	02/09/10 17:33
Benzo[b]fluoranthene		Α	4.0		0.17		mg/Kg-dry	1	02/09/10 17:33
Benzo[g,h,i]perylene		Α	1.6		0.17		mg/Kg-dry	1	02/09/10 17:33
Benzo[k]fluoranthene		A	1.3		0.17		mg/Kg-dn/	†	02/09/10 17:33
Chrysene		A	3.2		0.17		mg/Kg-dry	1	02/09/10 17:33
Dibenz[a,h]anthracene		A	0.34		0.17		mg/Kg-dry	1	02/09/10 17:33
Fluoranthene		A	8.8		0.17		mg/Kg-dry	1	02/09/10 17:33
Fluorene		A	0.35		0.17		mg/Kg-dry	1	02/09/10 17:33
Indeno[1,2,3cd]pyrene		A	1.3		0.17		mg/Kg-dry	1	02/09/10 17:33
Naphthalene		A		ND	0.17		mg/Kg-dry	1	02/09/10 17:33
Phenanthrene		A	4.0		0.17		mg/Kg-dry	1	02/09/10 17:33
Pyrene		A	6.3		0.17		mg/Kg-dry	1	02/09/10 17:33
Surr: Nitrobenzene-d5		S	91.2		14.2-125		%REC	1	02/09/10 17:33
Surr: 2-Fluorobiphenyl		S	94.6		21.6-112		%REC	1	02/09/10 17:33
Surr: Terphenyl-d14		S	116		10-139		%REC	1	02/09/10 17:33
PERCENT MOISTURE	Method:	2540B_	18ED		Pr	ep Date/	Time:		Analyst: SMA
Percent Moisture		Ā	11		0.10		WT%	1	02/05/10 14:07

Date:

Wednesday, February 24, 2010

ANALYTICAL RESULTS

Client: Weaver Boos Consultants, LLC

Client Project: South Bend, Indiana

TP - 4 @ 0 - 2' Client Sample ID:

Work Order / ID: ME1002212-07 Sample Description: Collection Date: 02/04/10 11:28 Sample Matrix: Solid Date Received: 02/05/10 13:00 ST Result RL Qual Units DF Analyses Analyzed Method: SW6010B **TOTAL METALS** Prep Date/Time: 02/08/10 08:30 Analyst: SAA Arsenic À 7.2 0.53 mg/Kg-dry 02/09/10 16:32 Â 410 0.40 02/09/10 16:32 Lead mg/Kg-dry PAH BY GC/MS Method: SW8270C Prep Date/Time: 02/08/10 08:14 Analyst: CLR mg/Kg-dry Acenaphthene Α 0.21 0.17 02/09/10 15:36 ND Acenaphthylene A 0.17 mg/Kg-dry 02/09/10 15:36 0.58 Anthracene Α 0.17 mg/Kg-dry 02/09/10 15:36 2.4 0.17 Benzo[a]anthracene mg/Kg-dry 02/09/10 15:36 Α 1.5 0.17 02/09/10 15:36 Benzo[a]pyrene mg/Kg-dry Benzo[b]fluoranthene 2.0 0.17 mg/Kg-dry 02/09/10 15:36 Benzo[g,h,i]perylene Α 0.91 0.17 mg/Kg-dry 02/09/10 15:36 Benzo[k]fluoranthene Α 0.89 0.17 mg/Kg-dry 02/09/10 15:36 2.0 0.17 Chrysene A mg/Kg-dry 02/09/10 15:36 Dibenz[a,h]anthracene À 0.18 0.17 mg/Kg-dry 02/09/10 15:36 Fluoranthene 4.9 0.17 mg/Kg-dry 02/09/10 15:36 0.20 Fluorene Α 0.17 mg/Kg-dry 02/09/10 15:36 0.72 Indeno[1,2,3cd]pyrene 0.17 mg/Kg-dry 1 02/09/10 15:36 Α ND Maphthalene 0.17 mg/Kg-dry 02/09/10 15:36 Phenanthrene Α 2.7 0.17 02/09/10 15:36 mg/Kg-dry Pyrene Α 4.0 0.17 mg/Kg-dry 02/09/10 15:36 S 66.0 %REC Surr: Nitrobenzene-d5 14.2-125 02/09/10 15:36 S 74.3 21.6-112 %REC 02/09/10 15:36 Surr: 2-Fluorobiphenyl %REC Surr: Terphenyl-d14 S 84.4 10-139 02/09/10 15:36

Method: 2540B 18ED PERCENT MOISTURE Prep Date/Time: Analyst: SMA A 10 0.10 02/05/10 14:07 Percent Moisture WT%

Client: Weaver Boos Consultants, LLC

Client Project: South Bend, Indiana

Client Sample ID: TP-4@4-5'

Percent Moisture

Sample Description: Collection Date: 02/04/10 11:34 Sample Matrix: Solid Date Received:

Date:

Work Order / ID:

Wednesday, February 24, 2010

ME1002212-08

02/05/10 13:00 ST Result RL Qual DF Analyzed Analyses Units Method: SW6010B TOTAL METALS Prep Date/Time: 02/08/10 08:30 Analyst: SAA Arsenic 19 0.51 mg/Kg-dry 02/09/10 16:59 Lead A 420 0.38 mg/Kg-dry 02/09/10 16:59 TCLP METALS Method: SW1311/6010B Prep Date/Time: 02/24/10 08:20 Analyst: SAA A ND 02/24/10 14:02 Arsenic 0.010 mg/L Method: SW8270C PAH BY GC/MS Prep Date/Time: 02/08/10 08:14 Analyst: CLR Acenaphthene 0.33 0.16 02/09/10 16:00 mg/Kg-dry ND A Acenaphthylene 0.16 mg/Kg-dry 02/09/10 16:00 Anthracene A 0.85 0.16 mg/Kg-dry 02/09/10 16:00 0.16 Benzo[a]anthracene A 2.6 mg/Kg-dry 02/09/10 16:00 Benzo[a]pyrene A 1.9 0.16 mg/Kg-dry 02/09/10 16:00 Benzo[b]fluoranthene A 2.5 0.16 mg/Kg-dry 02/09/10 16:00 Benzo[g,h,i]perylene Å 1.2 0.16 mg/Kg-dry 02/09/10 16:00 Benzo[k]fluoranthene A 1.4 0.16 mg/k/g-dry 02/09/10 16:00 A 2.7 Chrysene 0.16 mg/Kg-dry 02/09/10 16:00 A 0.16 0.16 Dibenz[a,h]anthracene mg/Kg-dry 02/09/10 16:00 Fluoranthene 6.4 0.16 mg/Kg-dry 02/09/10 16:00 0.29 A Fluorene 0.16 02/09/10 16:00 mg/Kg-dry 0.97 Indeno[1,2,3cd]pyrene A 0.16 02/09/10 16:00 mg/Kg-dry Naphthalene A ND 0.16 mg/Kg-dry 02/09/10 16:00 Phenanthrene A 3.9 0.16 mg/Kg-dry 02/09/10 16:00 Pyrene À 4.9 0.16 02/09/10 16:00 mg/Kg-dry S Surr: Nitrobenzene-d5 69.3 14.2-125 %REC 02/09/10 16:00 Surr: 2-Fluorobiphenyl S 77.3 21.6-112 %REC 02/09/10 16:00 S Surr: Terphenyl-d14 98.8 10-139 %REC 02/09/10 16:00 PERCENT MOISTURE Method: 2540B 18ED Prep Date/Time: Analyst: SMA

5.6

0.10

WT%

Wednesday, February 24, 2010 Date:

Client: Client Project: Weaver Boos Consultants, LLC

Client Sample ID:

South Bend, Indiana

TP - 5 @ 0 - 2'

Work Order / ID:

ME1002212-09

Sample Description: Sample Matrix: Solid							ction Date: e Received:		02/04/10 10:20 02/05/10 13:00		
Analyses		ST		Result	RL	Qual	Units	DF	Analyzed		
TOTAL METALS	Method	: SW6010	В		Pr	ep Date/	Time: 02/0 8/1	0 08:3	Analyst: SAA		
Arsenic		A	3.6		0.55		mg/Kg-dry	1	02/09/10 17:04		
Lead		Α	9.7		0.41		mg/Kg-dry	1	02/09/10 17:04		
PAH BY GC/MS	Method	: SW8270	C		Pr	ep Date/	Time: 02/0 8/1	0 08:1	4 Analyst: CLR		
Acenaphthene		A		ND	0.17		mg/Kg-dry	1	02/09/10 14:26		
Acenaphthylene		Α		ND	0.17		mg/Kg-dry	1	02/09/10 14:26		
Anthracene		Α		ND	0.17		mg/Kg-dry	1	02/09/10 14:26		
Benzo[a]anthracene		Α		ND	0.17		mg/Kg-dry	1	02/09/10 14:26		
Benzo[a]pyrene		Α		ND	0.17		mg/Kg-dry	1	02/09/10 14:26		
Benzo[b]fluoranthene		Α		ND	0.17		mg/Kg-dry	1	02/09/10 14:26		
Benzo[g,h,i]perylene		Α		ND	0.17		mg/Kg-dry	1	02/09/10 14:26		
Benzo[k]fluoranthene		Α		ND	0.17		mg/Kg-dry	1	02/09/10 14:26		
Chrysene		A		ND	0.17		mg/Kg-dry	1	02/09/10 14:26		
Dibenz[a,h]anthracene		A		ND	0.17		mg/Kg-dry	1	02/09/10 14:26		
Fluoranthene		A		ND	0.17		mg/Kg-dry	1	02/09/10 14:26		
Fluorene		Â		ND	0.17		mg/Kg-dry	1	02/09/10 14:26		
Indeno[1,2,3cd]pyrene		A		ND	0.17		mg/Kg-dry	-	02/09/10 14:26		
ivaphthalene		A		ND	0.17		mg/Kg-dry	1	02/09/10 14:26		
Phenanthrene		Á		ND	0.17		mg/Kg-dry	1	02/09/10 14:26		
Pyrene		Α		ND	0.17		mg/Kg-dry	1	02/09/10 14:26		
Surr: Nitrobenzene-d5		S	59.8		14.2-125		%REC	1	02/09/10 14:26		
Surr: 2-Fluorobiphenyl		S	73.3		21.6-112		%REC	1	02/09/10 14:26		
Surr: Terphenyl-d14		S	75.9		10-139		%REC	1	02/09/10 14:26		
PERCENT MOISTURE	Method	: 2540EL_1	18ED		Pr	ep Date/	Time:		Analysî: SMA		
Danaget Majotuna			4.4		0.10		VA/TO/	4	02/05/10 14:07		

Percent Moisture

A 14

0.10 WT%

Date: Wednesday, February 24, 2010

Client: Weaver Boos Consultants, LLC

Client Project: South Bend, Indiana

Client Sample ID: TP - 5 @ 4 - 5'

Sample Description:

Sample Matrix: Solid

Work Order / ID: Collection Date: ME1002212-10 02/04/10 10:25

Date Received: 02/05/10 13:00

imple Matrix: Solid						e Received:		02/05/10 13:00		
Analyses		ST		Result	RL	Qual	Units	DF	Analyzed	
TOTAL METALS	Method:	SW6010	В		Pre	ep Date/1	Γime: 02/08/1	0 08:3	80 Analyst: SAA	
Arsenic		A	2.7		0.48		mg/Kg-dry	1	02/09/10 17:10	
Lead		A	5.0		0.36		mg/Kg-dry	1	02/09/10 17:10	
PAH BY GC/MS	Method:	SW8270	С		Pre	ep Date/	Γime: 02/08/1	0 08:1	4 Analyst: CLR	
Acenaphthene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 14:49	
Acenaphthylene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 14:49	
Anthracene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 14:49	
Benzo[a]anthracene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 14:49	
Benzo[a]pyrene		À		ND	0.16		mg/Kg-dry	1	02/09/10 14:49	
Benzo[b]fluoranthene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 14:49	
Benzo[g,h,i]perylene		Α		ND	0.16		mg/Kg-dry	11	02/09/10 14:49	
Benzo[k]fluoranthene		A		ND	0.16		mg/Kg-dry	1	02/09/10 14:49	
Chrysene		A		ND	0.16		mg/Kg-dry	1	02/09/10 14:49	
Dibenz[a,h]anthracene		A		ND	0.16		mg/Kg-dry	1	02/09/10 14:49	
Fluoranthene		A		ND	0.16		mg/Kg-dry	1	02/09/10 14:49	
Fluorene		A		ND	0.16		mg/Kg-dry	1	02/09/10 14:49	
Indeno[1,2,3cd]pyrene		A		ND	0.16		mg/Kg-dry	1	02/09/10 14:49	
Naphthalene		A		ND	0.16		mg/Kg-dry	1	02/09/10 14:49	
Phenanthrene		A		ND	0.16		mg/Kg-dry	1	02/09/10 14:49	
Pyrene		A		ND	0.16		mg/Kg-dry	1	02/09/10 14:49	
Surr: Nitrobenzene-d5		S	54.8		14.2-125		%REC	1	02/09/10 14:49	
Surr: 2-Fluorobiphenyl		S	72.0		21.6-112		%REC	1	02/09/10 14:49	
Surr: Terphenyl-d14		S	91.4		10-139		%REC	1	02/09/10 14:49	

 PERCENT MOISTURE
 Method:
 2540B_18ED
 Prep Date/Time:
 Analyst:
 SMA

 Percent Moisture
 A 6.6
 0.10
 WT%
 1 02/05/10 14:07

Client: Weaver Boos Consultants, LLC

Client Project: South Bend, Indiana

Client Sample ID: TP - 6 @ 0 - 2' Date:

Work Order / ID:

Wednesday, February 24, 2010

ME1002212-11

Sample Description: Sample Matrix:	Solid						ection Date: e Received:		02/04/10 10:30 02/05/10 13:00
Analyses		ST		Result	RL	Qual	Units	DF	Analyzed
TOTAL METALS	Method:	SW6010	В		Pro	en Date/	Time: 02/08/ 10	08:3	0 Analyst: SAA
Arsenic		Α	8.5		0.52	THE THE STORE	mg/Kg-dry	1	02/09/10 17:15
Lead		Α	240		0.39		mg/Kg-dry	1	02/09/10 17:15
PAH BY GC/MS	Method:	SW8270	ic.		Pro	ep Date/	Time: 02/08/1 (08:1	4 Analyst: CLR
Acenaphthene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 16:23
Acenaphthylene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 16:23
Anthracene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 16:23
Benzo[a]anthracene		Α	0.26		0.16		mg/Kg-dry	1	02/09/10 16:23
Benzo[a]pyrene		Α	0.16		0.16		mg/Kg-dry	1	02/09/10 16:23
Benzo[b]fluoranthene		Α	0.21		0.16		mg/Kg-dry	1	02/09/10 16:23
Benzo[g,h,i]perylene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 16:23
Benzo[k]fluoranthene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 16:23
Chrysene		A	0.34		0.16		mg/Kg-dry	1	02/09/10 16:23
Dibenz[a,h]anthracene		A		ND	0.16		mg/Kg-dry	1	02/09/10 16:23
Fluoranthene		Α	0.28	}	0.16		mg/Kg-dry	1	02/09/10 16:23
Fluorene		A		ND	0.16		mg/Kg-dry	1	02/09/10 16:23
Indeno[1,2,3cd]pyrene		A		ND	0.16		mg/Kg-dry	1	02/09/10 16:23
Naphthalene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 16:23
Phenanthrene		A	0.20		0.16		mg/Kg-dry	1	02/09/10 16:23
Pyrene		Α	0.32		0.16		mg/Kg-dry	1	02/09/10 16:23
Surr: Nitrobenzene-d5		S	83.6		14.2-125		%REC	1	02/09/10 16:23
Surr: 2-Fluorobiphenyl		S	84.0		21.6-112		%REC	1	02/09/10 16:23
Surr: Terphenyl-d14		S	109		10-139		%REC	1	02/09/10 16:23
PERCENT MOISTURE	Method:	2540B_1	18ED		Pr	ep Date/	Time:		Analyst: SMA
Percent Moisture		Ā	8.8		0.10		WT%	1	02/05/10 14:07

Weaver Boos Consultants, LLC

Client Project: South Bend, Indiana

Client Sample ID: TP - 6 @ 4 - 5'

Sample Description:

Client:

annie Matrix: Solid

Work Order / ID: ME1 Collection Date: 02/0

Date:

ME1002212-12 02/04/10 10:37

Date Received: 02/05/10 13:00

Wednesday, February 24, 2010

Sample Matrix: Solid						Dat	e Received:	ri H	02/05/10 13:00	
Analyses		ST	8 3	Result	RL	Qual	Units	DF	Analyzed	
TOTAL METALS	Method:	200				ep Date/		0 08:3	80 Analyst: SAA	
Arsenic		Α	12		0.52		mg/Kg-dry	1	02/09/10 17:21	
Lead		Α	150		0.39		mg/Kg-dry	i	02/09/10 17:21	
PAH BY GC/MS	Method:	SW8270	С		Pre	ep Date/	Time: 02 /98/1	0 08:1	14 Analyst: CLR	
Acenaphthene		Α		ND	0.16		mg/Kg-dry	1	02/09/10 17:56	
Acenaphthylene		Α	0.35		0.16		mg/Kg-dry	1	02/09/10 17:56	
Anthracene		Α	0.53		0.16		mg/Kg-dry	1	02/09/10 17:56	
Benzo[a]anthracene		Α	2.7		0.16		mg/Kg-dry	1	02/09/10 17:56	
Benzo[a]pyrene		Α	2.2		0.16		mg/Kg-dry	1	02/09/10 17:56	
Benzo[b]fluoranthene		A	3.3		0.16		mg/Kg-dry	1	02/09/10 17:56	
Benzo[g,h,i]perylene		A	1.6		0.16		mg/Kg-dry	1	02/09/10 17:56	
Benzo[k]fluoranthene		Α	1.3		0.16		mg/Kg-dry	1	02/09/10 17:56	
Chrysene		A	2.8		0.16		mg/Kg-dry	1	02/09/10 17:56	
Dibenz[a,h]anthracene		A	0.34		0.16		mg/Kg-dry	1	02/09/10 17:56	
Fluoranthene		A	4.9		0.16		mg/Kg-dry	f	02/09/10 17:56	
Fluorene		A	0.26		0.16		mg/Kg-dry	1	02/09/10 17:56	
Indeno[1,2,3cd]pyrene		Α	1.4		0.16		mg/Kg-dry	1	02/09/10 17:56	
Naphthalene		A		ND	0.16		mg/Kg-dry	1	02/09/10 17:56	
Phenanthrene		A	2.6		0.16		mg/Kg-dry	1	02/09/10 17:56	
Pyrene		A	5.1		0.16		mg/Kg-dry	1	02/09/10 17:56	
Surr: Nitrobenzene-d5		S	83.7		14.2-125		%REC	1	02/09/10 17:56	
Surr: 2-Fluorobiphenyl		S	88.8		21.6-112		%REC	1	02/09/10 17:56	
Surr: Terphenyl-d14		S	129		10-139		%REC	1	02/09/10 17:56	
PERCENT MOISTURE	Method:	2540B	18ED		Pre	ep Date/	Time:		Analyst: SMA	
Percent Moisture		A	8.8		0.10		WT%	1	02/05/10 14:07	

FLAGS, FOOTNOTES AND ABBREVIATIONS (as needed)

NA = Not Analyzed N/A = Not Applicable

mg/L = Milligrams per Liter (ppm) ug/L = Micrograms per Liter (ppb) cfu = Colony Forming Unit
mg/Kg = Milligrams per Kilogram (ppm) ug/Kg = Micrograms per Kilogram (ppb) ng/L = Nanograms per Liter (ppt)

U = Undetected

J = Analyte concentration detected between RL and MDL (Metals / Organics)

j = Analyte concentration detected betweeen 1/2 PQL and PQL (for TIC analytes only)

B = Detected in the associated Method Blank at a concentration above the routine PQL/RL

b = Detected in the associated Method Blank at a concentration above the Method Detection Limit but less than the routine PQL/RL

D = Surrogate recoveries are not calculated due to sample dilution

ND = Not Detected at the Reporting Limit (or the Method Detection Limit, if listed)

E = Value above quantitation range

H = Analyte was prepared and/or analyzed outside of the analytical method holding time

= Matrix Interference

R = RPD outside accepted recovery limits
S = Spike recovery outside recovery limits

Surr = Surrogate

DF = Dilution Factor RL = Reporting Limit ST = Sample Type MDL = Method Detection Limit

SAMPLE TYPES

A = Analyte

I = Internal Standard

S = Surrogate

T = Tentatively Identified Compound (TIC, concentration estimated)

OC SAMPLE IDENTIFICATIONS

MBLK	=	Method Blank	ICSA	=	Interference Check Standard "A"	OPR	=	Ongoing Precision and
DUP	=	Method Duplicate	ICSAB	=	Interference Check Standard "AB"			Recovery Standard
LCS	=	Laboratory Control Sample	LCSD	=	Laboratory Control Sample Duplicate			
MS	=	Matrix Spike	MSD	=	Matrix Spike Duplicate			
ICB	==	Initial Calibration Blank	CCB	=	Continuing Calibration Blank			
ICV	=	Initial Calibration Verification	CCV	=	Continuing Calibration Verification			
PDS	=	Post Digestion Spike	SD	=	Serial Dilution			

CERTIFICATIONS

Below is a list of certifications maintained by the Microbac Merrillville Laboratory. All data included in this report has been reviewed for and meets all project specific and quality control requirements of the applicable accreditation, unless otherwise noted. Complete lists of individual analytes pursuant to each certification below are available upon request.

- Illinois EPA for the analysis wastewater and solid waste in accordance with the requirements of the National Environmental Laboratory Accreditation Program [NELAP] (accreditation #100435)
- Illinois Department of Public Health for the microbiological analysis of drinking water (registry #1755266)
- Indiana DEM approved support laboratory for solid waste and wastewater analyses
- Indiana SDH for the chemical analysis of drinking water (lab #C-45-03)
- Indiana SDH for the microbiological analysis of drinking water (lab #M-45-8)
- Kentucky DEP for the chemical analysis of drinking water (lab #90147)
- Kentucky EPPC for the analysis of samples applicable to the Underground Storage Tank program (lab #75)
- New York SDH for the chemical analysis of air and emissions (lab #11909)
- North Carolina DENR for the environmental analysis for NPDES effluent, surface water, groundwater, and pretreatment regulations (certificate #597)
- Tennessee DEC for the chemical analysis of drinking water (lab #04017)
- Wisconsin DNR for the chemical analysis of wastewater and solid waste (lab #998036710)

MICROBAC LOCATIONS, SERVICE CENTERS (SC), AND SATELLITE OFFICES (Sat

Baltimore Division - Baltimore, MD Kerntucky Division - Louisville, KY Ohi, Valley 14 Sion - Marietta, OH Pittsburgh Division - Warrendale, PA Camp Hill Division - Camp Hill. PA Rentucky Division (Sat) - Evansville, IN Camp Hill Division (SC) - Pittston, PA Ecriticky Division (Sat) - Lexington, KY Pict mone Divis ion - Richmond, VA Chicagolard Division - Merrillville, IN Kernucky Division (Sat) - Paducah, KY South Caroling Division - New Ellenton, SC Chicagoland Division (SC) - Indianapolis, IN Knearville Division - Maryville, TN South, Jarsey Division - Laurel Springs, NJ Southern California Division - Corona, CA Massachusetts Division - Worchester, MA Southers | He udquarters - Poquoson, VA Erie Division - Erie, PA Microbac Corporate Office - Pittsburgh, PA Southern Testing Division - Wilson, NC Fayet teville Division - Fayetteville, NC Microbac N3 - Certiani Office - Cortland, NY Southern Testing Division (Sat) - Greensboro, NC Hauser Division - Bouldes, CO Microbac WY - Waverly Office - Waverly, NY Venice Division - Venice, FL

COOLER INSPECTION

Client Name: Weat	ver Boos Consultants,	Ц		Date / Time	Receive	ed: 2/5/	2010 <u>1:00:00 PM</u>
Work Order Numbe	ME1002212			Received by	/ :	DP	
Checklist completed	by DP	2/5/2010 1:41:05 PM		Reviewed b	y DPP	2/5	/2010 3:07:54 PM
		Carrier name:	<u>Microbac</u>	Committee			
After-Hour Arrival?			Yes	L N	0 🗹		Tamba
,, ,	cooler in good conditio		Yes	₩ N	0	Not Presen	
	t on shippping contain	er/cooler?	Yes	L N	0	Not Presen	py
•	t on sample bottles?		Yes	1-3	0	Not Presen	t 🗹
Chain of custody pro			Yes	1 0	0		
•	cluded sufficient client		Yes	1-2	0		
-		le collector information?	Yes	6	0		
*	cluded a sample descr	•	Yes		0 -		
	rees with sample labe		Yes	1-2	0		
	entified the appropriate		Yes	1-7	0 🔄		
•	cluded date of collection		Yes	1-7	0		
-	cluded time of collection	number of containers?	Yes Yes	T7	0		
Samples in proper of		number of containers:	Yes	N N	100		
Sample containers i			Yes	₩ N	17-1		
•	olume for indicated tes	†?	Yes	V	1		
,	d within holding time?		Yes	1 43			
•	erved, are the preserva	atives identified?	Yes		o 🗔		
Samples properly p			Yes	F-3	o 🗆		
	1	f No, adjusted by?	[Date/Time			
Chain of custody inc	cluded the requested a	nalvses?	Yes	Ĭ Ŷ	0		
	ned when relinguishe		Yes	V N	0		
Samples received o	,		Yes	IV N	o 🗆		
	Containe	r/Temp Blank temperatures	Cooler	Temp			
			1	4 ºC	200 T	7 20	1
VOA vials for aqueo	ous samples have zero	headspace? No VOA	vials submitted	(X)	Yes	No	
ANY "NO" EVALUA	ATION (excluding Aft	er-Hour Receipt) REQUIRE	S CLIENT NOT	TFICATION.			
General Comments	:						
Sample ID	Client Sample	ID		Comments			
ME1002212-01A	TP - 1@0-2"	Report in dry weight					
ME1002212-02A	TP - 1 @ 4 - 5'	Report in dry weight					
ME1002212-03A	TP - 2 @ 0 - 2'	Report in dry weight		_		_	
ME1002212-04A	TP - 2@ 4 - 5'	Report in dry weight	_				
ME1002212-05A	TP - 3 @ 0 - 2'	Report in dry weight					
ME1002212-06A	TP - 3 @ 4 - 5'	Report in dry weight					
ME1002212-07A	TP - 4@ 0 - 2'	Report in dry weight					
ME1002212-08A	TP - 4@4-5	Report in dry weight	_				
ME1002212-09A	TP - 5 @ 0 - 2'	Report in dry weight					
WE1002212-10A	TP - 5 @ 4 - 5'	Report in dry weight					
ME1002212-11A	TP - 6 @ 0 - 2'	Report in dry weight					
ME1002212-12A	TP - 6 @ 4 - 5	Report in dry weight					

Date: Wednesday, February 24, 2010

Ron Misiunas

From: Stefanek, Ed [estefanek@weaverboos.com]

Sent: Friday, February 12, 2010 12:26 PM

To: Ron Misiunas; Slough, Jodi

Subject: RE: ME1002212 - South Bend, Indiana

Ron.

I also need a TCLP for the highest lead, which I believe is TP-1 at 0-2. Can you put that on order as well?

Ed

Edward B. Stefanek | Sr. Project Manager Weaver Boos Consultants

4085 Meghan Beeler Court | South Bend, IN 46628 t. 574-271-3447 | f. 574-271-3343 | m. 574-302-0614 www.weaverboos.com | estefanek@weaverboos.com

DISCLAIMER

Electronic documents provided by Weaver Boos Consultants are an instrument of service and are being provided solely as a convenience to the user. Any fee(s) for this documentation are handling fees and are due upon receipt. Weaver Boos Consultants makes no representation regarding the fitness of this documentation for any particular purpose or suitability for use with any software or hardware. Due to the nature of electronic documents and the fact they may be altered (whether intentional or not), Weaver Boos Consultants does not express or imply warranty for the accuracy or completeness of this documentation. Hard copies (i.e., prints, paper copies, etc.) shall prevail in any dispute over the accuracy or sufficiency of electronic documents and are available through this office. The information provided shall not be copied (electronically or otherwise) or used for any purpose not authorized in writing by Weaver Boos Consultants. Through the use of the information contained herein, the user agrees to indemnify and hold Weaver Boos Consultants (or any associated office) and any of its employees harmless from any loss, damage, liability or cost, including reasonable attorney's fees arising from any use or reuse of any electronic documentation or information as contained herein.

IMPORTANT NOTICE: The information contained in this email message (including any attachments) may be confidential, privileged or both, and is intended exclusively for the addressee(s) intended by the sender. If it appears you have received this email message in error, please notify the sender immediately and then delete; any other use of this email message is prohibited. Thank you.

From: Ron Misiunas [mailto:rmisiunas@microbac.com]

Sent: Friday, February 12, 2010 12:02 PM

To: Stefanek, Ed; Slough, Jodi

Subject: ME1002212 - South Bend, Indiana

Hello Ed & Jodi -

I have attached the results for the samples we rec'd on 2/5. Sample 1002212-08 (TF-4@4-5') had the highest total As value (19 mg/Kg) of the bunch. Per the COC, I am having this sample analyzed for TCLP As. Results will be available next week.

Thanks and have a great day.

Ron

Ronald J. Misiunas

Microbac Laboratories, Inc.
250 West 84th Drive
Merrilliville, IN 46410

office: 219-769-8378 fax: 219-769-1664 mobile: 219-746-4677

email: rmisiunas@microbac.com

This communication is for the exclusive and confidential use of the designated recipient, and any other distribution or use is unauthorized and strictly prohibited. If you are not the designated recipient, please notify the sender immediately then delete the message from your computer or destroy the facsimile.

Did you know Microbac provides:

Specialized Environmental Services:

Air Analysis: http://www.microbac.com/air.html • Low Level Mercury Analysis: http://www.microbac.com/ling.html

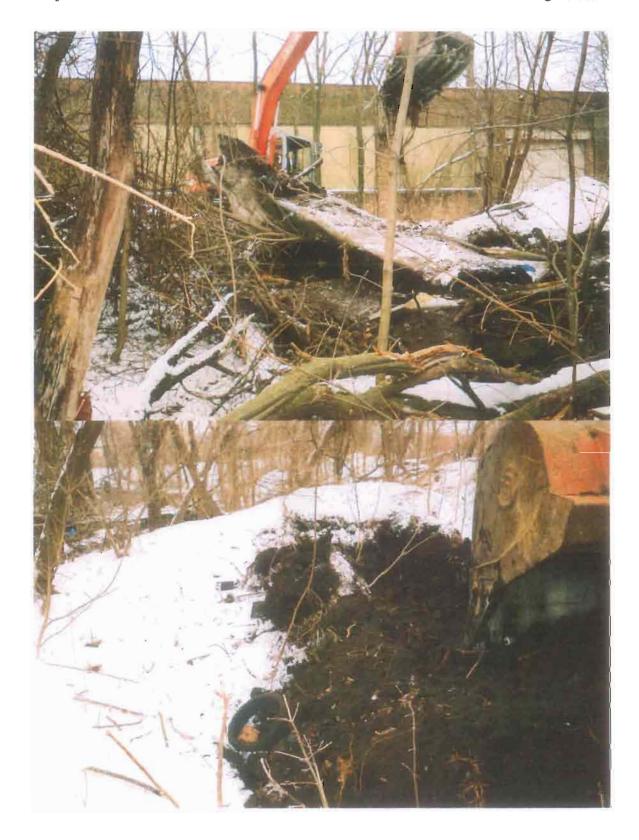
Food / Microbiology Services:

Food Safety: http://www.microbac.com/food_micro.html • Retail Inspection: http://www.microbac.com/foodstoreinsp.html

	T	-		9	9		_	_	हे										T					T			1
Chain of Custody Record Number 81.027	on back	Report Type			I V I Level TV CLP-IIKe	190 080	Marmail (addrace)	CO. CO.	For Lab Use Only	1002 2112	10/1	02 A	0 3 4	A 40	h 70	1 90	57 1	180	N 30	101	11. 11	[] Arcf	em (Date/Time		Date/Time /3.co	Page / of 2
Chain of C	Instructions on back			e e e	[] Level IV	Sampler Phone # K74, 90 K3.	Caraka	Other (specify) (9) Hexane (1) Ur		///												propriete [] Return	(signature)	(signature)		Received for Lab By (signature)	d
		Turnaround Time	(a) (a) (b) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a	1 1 noon (nomy lab)	(needed by)	Sampler	(seddress)	aste Water (WW), (Lead Sternic	7	7	7	7	7	7	7	7	7	7	7	[] Dispose as appropriate	Received By	Received By (signature)		Received for	A
5713 West 85th Street Indianapolis, IN 46278 Tel: 317-872-1375 Fax: 317-872-1379		1-5	7			The Man	iem-e M	ace Water (SW), W	Requested Analyses	Preservative Types **	1 m	B	η	7	K	3	3	K	77	η	η	Sample Disposition	Date/Time	me me	15 13e0	Date/Time	
India India Tel: Fax:		1500 N	1	10.0	yes(1) [] No	19		ter (GW), Surfa	betoe	Time Colle	6 01:0	0.15 2	0.43 2	0.53 2	1.15 2	1.30 2	C 85.7	1.34 3	130 3	0.35 3	0:30 2	San			ì		
[] 250 West 84th Drive Nerriliville, IN 46410 Tel: 219-769-8378 Fax: 219-769-1664		James Ly		200	Compliance Monitoring? [] Yes(1) [] No	Sampler Signature	,	W), Groundwai Acetate, (6) Me	betoe	Date Colle	ALIO A	1 01/1/10	2/4/10 //	Jallo 1	2/4/10 /	2/4/10 /	1/01/5/6	11 01/2/6	11 01/1/10	1/ offple	11/10/14/2	Radioactive	Relinquished By (signature)	d By (signature)	186	juished By (signature)	
est 84 ville, 1 19-769		- 8		2	Compliance Monit	mple		ater (D		benetii-				- 10				Ì				(1)R	uishe	Relinquished By	1st	uishe	
250 We Merrilly Tel: 21 Fax: 21	1	Project	200	2	Comple (1) Age	S		ing We	6	Composite						7						Snop	Relind	Reling	6	Reling	
E -	İ		Ī	T			=	Drink 4) Na(Girab	1	1	7	7	2	1	2	2	7	7	7	Hazar		/			20
Samples nitted to:		3					[] Fax (fax #)	Wipe		"xirtsM	S	0	cΛ	N	S	S	ſΛ)	S	2	S	cΛ	[] Non-Hazardous	,			٥.	0
Microbac Submitted to:		CHENT Name LOGICY BOOS CONSULTANTA	- L. C. L. C.	Lal Courty)	Telephone ATU 271 AUUT	PRINT) CAS	[1] Mail [1] Telenhone	in Types: Soll/Solid (S), Sludgative Types: (1) HNO3. (2) H2SC		Client Sample ID	P-100.2	P-1045	P-2@0-2	P-20 4-51	P. 30 0-2'	P-3@ 4-51	P-4@0-2'	P-4@ 4-51	P-500.21	P-5e 4-51	P-60 0-2'	Possible Hazard Identification [] Hazardous	Comments LDO TCLP Analysis on sample with	a Mighest Arsenic level	MMs including napothalene	Sample temperature upon receipt in degrees C =	rev. 11/04/04
ME	100	2212			S E			l.	2/16/20	140	-	H	E	-	F	-	H	-	1		7	Po	اد گ Page		1		ě

ME1002212 WBG-SOUTH BEND South Bend, Indiana Ed Stefanek

END 2/16/2010 CES


	[] Level II	P-like		e Only													13 8	1
Chain of Custody Record Number 74442 Instructions on back	port Type		g g	For Lab Use Only	12 /				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					Archive Date/Time	2/5 1025	Date/Time	Date/Time	2000
ustody Re 74442 nback	s Only	> (eveserve		0				y	\(\frac{1}{2}\)		\sqcup		I. Arc				Page 5
Chain of Custody Number 744	R Desults Only [] Level III	[] Level IV	(y) Unpreserved		jir.	27/				: + {		Н		Hernim			nature)	Pac
Shain of Number Instruction			(specify	-						N .		\forall	\dashv	lre)	1	iature)	Received for Lab By (signature)	
0			Sampler Phone # (WW), Other (specoulfate, (9) Hexar	SHA					÷					Dispose as appropriate Received By (signisture)	1	Received By (signature)	or Lab	1
	Turnaround Time (7 working days)	(needed by)	Samp s) er (WW hiosulfa	TIMOSTA	7		-	L		À		Н		Se as a	111.6	selved E	paya i	1
	Turmand e (7 wor (notify	neu)	(address ste Wat	POST	7		+	-		9		\mathbb{H}	-	I J DISPO	1	Rec	Rec	1
Street 46278 75	Turnaroune (PRoutine (7 working	1 2	Sam [] e-mail (address) (SW), Waste Water (W) ate, (8) Sodium Thiosul	p s	7	+	- 3	-	10.4			\forall	-	Ition	0.5	500		
[] 5713 West 85th Street Indianapolis, IN 46278 Tel: 317-872-1379 Fax: 317-872-1379	ा से		Water (S	Requested Analyses Preservative Types ***	2									Sample Disposition Date/Time	10,	-	98	
oris We ndianag fel: 317. fax: 317.	Bern	ο _ν (Sodium	anisiners T ≤ / F ⊆	53			1				\Box	-	Sample D	15/0	Date/Time	Date/Time	
Ē	Suth Penal Suth Penal	Yes(1) []	ater (GW), sethanol, (7)	Defoello SemiT	0.637				,					Ī				1
[] 250 West 84th Drive Merriliville, IN 46410 Tel: 219-769-8578 Fax: 219-769-1664	hy of St. 37	Compliance Monitoring? [] Yes(1) [] No (1) Agency/Program	Sampler Signature Sampler Phone # 752 - 034 [] e-mail (address) Water (DW), Groundwater (GW), Surface Water (SW), Waste Water (WW), Other (specify) (5) Ziro Acetate, (6) Methanol. (7) Sodium Bisulfate, (8) Sodium Thiosulfate, (9) Hexane, (U) Unpreserved	Date Collected	101/10									i j Hadioaciive	163/	Relinquiched By (signature)	Relinquished By (signature)	
250 West 84th Driv Merrillville, IN 464 Tel: 219-769-8378 Fax: 219-769-1664	tion by	Compliance Monit	vater (D 5) Zinc	benetii-i										15	In	quishe	dalshe	
Merri Merri Tel: 2 Fax:	Project Location Po # 8	Comp (1)Ag	S nking W	Composite							_		4	I Non-Hazardous		Refiling	Rellin	
	CA		ax #)	Matrix* denab	7	_	+	-			+	\blacksquare	-	10h-Ha			13	
Samples Submitted fo:			Fax (fax #) Fax (fax #) lge, Oil, Wipe, 1	*vistelil	W	+		H		Н	+	\forall	- 1				5)
Sub	an Guler Send IN	Elanel 3447	[] Telephone [] [] [] [] Solid (S), Studge, H2SO4,											[] Hazardoue			in decrees C	n analkan III
Aicrobac	Warr Bo 85 Mesh Swith B	Siwar of Si	INT) OCY (1) Mail strik Types: So attive Types; (1)	Client Sample ID	451			. *						d Identification	•		Sample fembendure unon necelpt in decrees C=	attice upon receipt
Micı	Client Name Address City, State, Zip	Contact Contact Telephone #	Sampled by (PRINT) Send Report via * Matri * Preservative		TP-60									Possible Hazard Identification Comments		,	ample fembers	rev. T1/04/ps

PHOTOGRAPHS



