SOUTH BEND, INDIANA DEPARTMENT OF ECONOMIC DEVELOPMENT ENVIRONMENTAL ASSESSMENT OF THE FORMER TRANSWESTERN BUILDING

NOVEMBER 25, 1988

EIS ENVIRONMENTAL ENGINEERS, INC. 1701 NORTH IRONWOOD DRIVE SOUTH BEND, INDIANA 46635

## TABLE OF CONTENTS

| SECTION |              | PAGE |
|---------|--------------|------|
| 1.0     | INTRODUCTION | 1    |
| 2.0     | PROCEDURES   | 3    |
| 3.0     | RESULTS      | 6    |

## FIGURE

| 1.1 | SITE LOCATION MAP    | 2 |
|-----|----------------------|---|
| 2.1 | SITE PLAN            | 4 |
| 3.1 | GROUNDWATER FLOW MAP | 9 |

## TABLE

| 3.1 ANALYSIS RESULTS FOR VOC | 7 |
|------------------------------|---|
|------------------------------|---|

## APPENDIX

| A | LABORATORY ANALYSIS REPORTS                            |
|---|--------------------------------------------------------|
| В | PID ANALYZER CALIBRATION AND FIELD ANALYSIS RECORDS    |
| С | SUBSURFACE EXPLORATION LOGS                            |
| D | SECTION 5.4 OF THE EIS PID ANALYZER STANDARD OPERATING |
|   | PROCEDURES                                             |

#### 1.0 INTRODUCTION

EIS Environmental Engineers, Inc. (EIS) was retained by the South Bend Department of Economic Development to perform an environmental assessment of the former Transwestern site along Lafayette Blvd. in South Bend, Indiana (See Figure 1.1). The scope of work consisted of collecting and analyzing soil and groundwater samples from three (3) soil borings conducted on or near the former Transwestern site. During the borings, soil samples were collected and screened in the field for the presence of Volatile Organic Compounds (VOC) using an analyzer equipped with a photoionization detector (PID). One soil sample, which exhibited the highest PID analyzer measurement, was selected for laboratory VOC analysis. A groundwater sample from each boring was collected for laboratory analysis of VOC and heavy metals.



EIS Environmental Engineers, Inc.

#### 2.0 PROCEDURES

Locations of the borings were selected on the basis of expected groundwater flow direction and proximity to the former Transwestern building. Groundwater flow directions in the South Bend area are generally toward the St. Joseph River. Therefore, the expected flow direction at the former Transwestern site would likely be toward the northeast. Three (3) borings were located so as to provide one boring (BH-1) upgradient and two borings (BH-2, BH-3) downgradient with respect to the expected groundwater flow direction (see Figure 2.1).

A CME-75 drill rig equipped with a screened hollow stem auger was used to bore a hole to the water table at each location. As the boring was advanced, soil samples were collected at three foot intervals using an 18 inch (1.5 feet) split-spoon sampler (ASTM Method D-1586). Descriptions of the soil samples were made using a hand lens, grain-size chart, and a standardized color chart. The descriptions were recorded on a subsurface exploration log and are provided in Appendix C. All equipment expected to contact the subsurface soil was washed prior to use at the site. Furthermore, the split-spoon sampler was washed with trisodium phosphate (TSP) and rinsed with deionized water prior to use at each boring location.

-3-



A portion of each split-spoon soil sample was placed into a glass jar, sealed with aluminum foil, and allowed to sit for approximately five (5) minutes. The probe of an HNU PID analyzer was then inserted through the aluminum foil seal to sample the air in the headspace of the jar for the possible presence of VOC. Included in Appendix D is a copy of Section 5.4 of the EIS Standard Operating Procedures for soil vapor analysis. The soil sample which exhibited the highest PID measurement was collected in a 40cc glass vial, placed into an iced cooler and transported back to the EIS laboratory for analysis. This sample was collected from boring BH-2 at a depth of 27.0 to 28.5 feet.

At each boring, an electronic water level indicator (Roctest, Model CRR6) was used to measure the static water level within the hollow stem auger. Groundwater samples for VOC and heavy metals analysis were collected with a Teflon bailer from each boring. Samples for VOC analysis were placed into prepreserved 40cc glass vials, whereas samples for heavy metals analysis were placed into pre-preserved one liter plastic bottles. These samples were placed into an iced cooler and transported to the EIS laboratory for analysis. The bailer, bailer rope and water level indicator were cleaned with TSP and rinsed with deionized water prior to use at each boring.

Upon the completion of each boring, the auger stem was removed and a tremie pipe was used to pressure grout the bore hole with a Bentonite clay mixture to grade.

-5-

#### 3.0 RESULTS

The PID analyzer calibration and field analysis records are included in Appendix B. The PID headspace analysis performed on the soil samples from the borings generally resulted in measurements no greater than background levels suggesting that VOC contamination of the soil was unlikely to be present. The one exception was the soil sample from boring BH-2 at a depth of 27.0'-28.5' below grade. The peak PID analyzer reading for this sample was 6 ppm which was approximately three times greater than the background level. A PID analyzer reading of greater than twice background level is generally considered by EIS to be indicative of the possible presence of VOC contamination. However, the PID analyzer field results are not definitive and laboratory analysis is required to confirm the presence of VOC contamination and to define the specific compounds involved.

The laboratory VOC and metals analysis reports are provided in Appendix A and summarized in Table 3.1. Laboratory analysis did not detect VOC contamination in the soil sample but did detect VOC contamination in the groundwater sample from each boring. Trace amounts of 1,1,1-Trichloroethane, Tetrachloroethylene and Toluene were present in the groundwater sample from boring BH-1, and trace amounts of c-1,2-Dichloroethylene were present in the groundwater sample from boring BH-3.

-6-

## TABLE 3.1

- ----

## ANALYSIS RESULTS FOR VOC

| Parameter              | C<br>Gro<br><u></u> | oncentra<br>undwater<br>µg/l -<br><u>BH-2</u> | BH-3 | Soil<br>(ppm)<br>BH-2 | USEPA<br>Maximum<br>Contaminant<br>Levels |
|------------------------|---------------------|-----------------------------------------------|------|-----------------------|-------------------------------------------|
| c-1,2-Dichloroethylene | N.D.*               | N.D.                                          | 4.4  | N.D.                  | N.E.**                                    |
| 1,1,1-Trichloroethane  | <1                  | N.D.                                          | N.D. | N.D.                  | 200                                       |
| Tetrachloroethylene    | 2.7                 | N.D.                                          | N.D. | N.D.                  | N.E.                                      |
| Toluene                | 1.9                 | N.D.                                          | N.D. | N.D.                  | N.E.                                      |
| Fuel Hydrocarbons      | N.D.                | 760                                           | N.D. | N.D.                  | N.E.                                      |

### ANALYSIS RESULTS FOR HEAVY METALS

|              | C<br>Gro    | oncentration;<br>undwater (mg, | s<br>/l)    | National Drinking<br>Water Standards |
|--------------|-------------|--------------------------------|-------------|--------------------------------------|
| Parameter    | <u>BH-1</u> | BH-2                           | <u>BH-3</u> | (Primary Standards)                  |
| Arsenic      | 0.01        | 0.01                           | <0.01       | 0.05                                 |
| Barium       | 4.6         | 1.6                            | 1.4         | 1.0                                  |
| Cadmium      | 0.05        | 0.04                           | 0.04        | 0.010                                |
| Chromium (T) | 0.64        | 0.33                           | 0.30        | 0.05                                 |
| Lead         | 8.6         | 2.3                            | 2.4         | 0.05                                 |
| Mercury      | 0.025       | 0.0035                         | 0.0025      | 0.002                                |
| Selenium     | <0.01       | <0.01                          | <0.01       | 0.01                                 |
| Silver       | <0.05       | <0.05                          | <0.05       | 0.05                                 |

\* N.D. = Not Detected

\*\* N.E. = Not Established

The only detected VOC contamination in the groundwater sample from boring BH-2 was fuel hydrocarbons at a level of 760 parts per billion (ppb). Laboratory analysis detected heavy metal contamination in the groundwater sample from each boring.

The U.S. Environmental Protection Agency (EPA) has established a maximum contaminant level in drinking water of 200 ppb for 1,1,1-Trichloroethane. The 1,1,1-Trichloroethane detected in the groundwater sample collected from boring BH-1 was below the Practical Quantitation Limit (PQL) of 1 ppb. There are presently no established EPA maximum contaminant levels for c-1,2-Dichloroethylene, Tetrachloroethylene, Toluene or fuel hydrocarbons. The levels of metals contamination detected in the groundwater sample from each boring exceed the Primary National Drinking Water Standards for Barium, Cadmium, Chromium (T), Lead and Mercury, but do not exceed the standards for Arsenic, Selenium and Silver.

The fuel hydrocarbons observed in the groundwater sample collected from boring BH-2 appear likely to have a source other than the soil in the immediate area of the boring.

The groundwater flow direction, as determined from the static water levels measured in each of the three borings, appears to be approximately S 60° E (see Figure 3.1). This southeasterly flow direction differs approximately ninety degrees from the

-8-



-9-

initially expected northeasterly flow direction and may represent the effect of possible large scale pumping activity in the area. Such large scale pumping activity is referenced in the Indiana Department of Natural Resources, 1987 Publication "Water Resource Availability in the St. Joseph River Basin, Indiana, Water Resource Assessment 87-1". However, it should also be noted that the static water levels in the borings may not have stabilized when the measurements were taken. Consequently, the apparent groundwater flow direction indicated by the static water levels may not be indicative of the actual flow direction. APPENDIX A

## LABORATORY ANALYSIS REPORTS

.



## ANALYTICAL REPORT SHEET

|                                                | Pocius                         |                         |                          |               |  |  |  |
|------------------------------------------------|--------------------------------|-------------------------|--------------------------|---------------|--|--|--|
| CLIENT: South Bend<br>1200 Count<br>South Bend | Dept. of Econ.<br>y-City Bldg. | Dev.                    | SAMPLE IDENTI            | FICATION:     |  |  |  |
| , bouth benu                                   | , 18 40001                     |                         | Transwestern             | Site          |  |  |  |
| ANALYSIS NO:                                   | 5081H - 5085H                  |                         | Collected by             | EIS (JCS)     |  |  |  |
| DATE SAMPLED:                                  | 09-28-88                       |                         | 9-28-88                  |               |  |  |  |
| DATE RECEIVED:                                 | 09-28-88                       |                         | EIS Project #1456-01     |               |  |  |  |
| DATE FORWARDED:                                | 11-21-88                       |                         |                          |               |  |  |  |
| Parameter                                      | C<br>Boring<br>                | oncentrat<br>Boring<br> | ion (mg/l)<br>Boring<br> | Trip<br>Blank |  |  |  |
| Arsenic                                        | 0.01                           | 0.01                    | <0.01                    | <0.01         |  |  |  |
| Barium                                         | 4.6                            | 1.6                     | 1.4                      | <0.5          |  |  |  |
| Cadmium                                        | 0.05                           | 0.04                    | 0.04                     | <0.04         |  |  |  |
| Chromium, Total                                | 0.64                           | 0.33                    | 0.30                     | <0.05         |  |  |  |
| Lead                                           | 8.6                            | 2.3                     | 2.4                      | <0.1          |  |  |  |
| Mercury                                        | 0.025                          | 0.0035                  | 0.0025                   | <0.0002       |  |  |  |
| Selenium                                       | <0.01                          | <0.01                   | <0.01                    | <0.01         |  |  |  |
| Silver                                         | <0.05                          | <0.05                   | <0.05                    | <0.05         |  |  |  |

Volatile Organic Compounds See Attached Report

Andin Posite LABORATORY DIRECTOR

| CHAIN OF CUSTODY RECOR                                                                                       | D – El                      | SE            |            | IRO        | NME            | NT         | AL E          | ENGI     | NEERS INC                                                   | C                               |                           |
|--------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|------------|------------|----------------|------------|---------------|----------|-------------------------------------------------------------|---------------------------------|---------------------------|
| pect No: Project Name<br>56-01 Hydrogeologic Study-Tranwestern Site<br>nplers: [Signature]<br>. C. Apprliche | Juanlily<br>ol<br>ontainers | 4             |            |            | x ,0           |            |               |          | Remarks                                                     | EIS LA<br>ONL<br>I=Int<br>B=Bro | B USE<br>Y<br>act<br>oken |
| a.No. Date Time of 20 Station Location                                                                       |                             | /-            | Ŷ          | 19         |                |            |               | <u> </u> | ./                                                          | Sample<br>State                 | Tape                      |
| Blunk 4-28-88 6:30 XI Trip Blanks                                                                            | 2                           | IXI           | XI         |            |                |            |               |          |                                                             | 50814                           | <u> </u>                  |
| -1 1 19:30 × Bosing #1                                                                                       | 13英                         | XI            | XI         | \$         |                |            |               |          | No VOC 50il inbuitted (F.C. Apalilu.                        | 50824                           | Seil                      |
| -2 11 12:20 X Boring # 2                                                                                     | 14                          | X             | X          | $\times$   |                |            |               |          |                                                             | S0834                           | £5894H                    |
| -3. 11 3:35 X Bosing # 3                                                                                     | 3英                          | X             | XI         | #          |                | 1          |               |          | No VOC 50: 15ubmited (g. C. Aprilia                         | 1)50954                         |                           |
| 4 + + + + + + + Boting # 4                                                                                   | 4                           | IX.I          | X          | $\times  $ | ╃━-╀━          | -+-        | +1            |          | > Sameles from Borns 4 water<br>Not collected, A. C. Porlan | 1                               | •                         |
|                                                                                                              |                             |               | 1          |            |                | 1          |               |          |                                                             | ł                               |                           |
|                                                                                                              | 1                           |               | 1          | 1          |                |            |               |          |                                                             |                                 |                           |
|                                                                                                              | 1                           |               | 1          | 1          |                | 1          | 11            |          |                                                             |                                 |                           |
|                                                                                                              | 1                           | 11            | 1          |            |                |            | 11            |          |                                                             |                                 |                           |
|                                                                                                              |                             | $\frac{1}{1}$ |            | 1          | 1 1            | Ì          | 11            |          |                                                             |                                 |                           |
|                                                                                                              | 1                           |               | <u>-</u> - |            | 1 1            | <u> </u>   | $\frac{1}{1}$ |          |                                                             | 11 1                            |                           |
|                                                                                                              |                             |               | <u> </u>   |            | <u>   </u>     | - <u> </u> | <u></u>       |          |                                                             | <u></u>                         |                           |
|                                                                                                              |                             |               | <u> </u>   |            | $\frac{1}{1}$  | <u></u>    |               |          |                                                             | <u>  </u>                       |                           |
|                                                                                                              |                             |               |            |            | <u>   </u><br> |            |               |          |                                                             |                                 |                           |
|                                                                                                              |                             |               | <u>+</u>   | <u> </u>   | <u>   </u><br> |            | $\frac{1}{1}$ |          | <u> </u>                                                    |                                 |                           |
|                                                                                                              | 1                           |               | <u> </u>   |            |                | <u> </u>   | Date          | ITime    | Received by:                                                |                                 |                           |
| 7. C. ARululu 9-28-88 6:00 PM                                                                                | Re                          | linqu         | lsne       | 2 Dy.      |                |            | ,             |          |                                                             |                                 |                           |
| inquishea by: Date Time Receivea by:                                                                         | Re                          | linqu         | ISDe       | c by:      |                |            | Date          | Time     | Received by:                                                |                                 |                           |
| e of Transportation EIS Venicle Pur                                                                          | olic Trans                  | sport         | ation      |            |                |            |               |          |                                                             |                                 |                           |
| Ca                                                                                                           | rrier:                      | · · ·         |            |            |                |            |               |          | Way or Air Bill No.                                         |                                 |                           |

-

.

ŝ

|                                      | VOC) ANALYSTS REP | ORT           |
|--------------------------------------|-------------------|---------------|
| Mr. K.C. Pocius                      |                   |               |
| CLIENT: South Bend Department of     | Date Reported:    | 10-26-88      |
| Economic Development                 | - EIS Lab No.:    | 5081н - 5085н |
| 1200 County-City Building            | Sample Date:      | 9-28-88       |
| South Bend, IN 46601                 | Date Received:    | 9-28-88       |
| <b>P.O. #</b> LOA                    | Date Analyzed:    | 10-06-88      |
| Sample ID: Transwestern Site         | Samples Receive   | d             |
| _                                    | Refrigerated:     | Yes 🗸 No      |
| . Groundwater from Bore Holes #1,2,3 | In 40 cc Vials    | : Yes 📝 No 🔤  |
| . Soil from Bore Hole #2             | Air Space:        | Yes 🔽 No 🔽    |

#### RESULTS

o Table 1 presents results of analysis.

SAMPLE RESULTS WILL LIST ONLY THOSE COMPOUNDS WHICH ARE ACTUALLY DETECTED IN THE SAMPLE. If no compounds of interest are detected, the following type of statement is given:

- "No Table 3 Volatile Organic Compounds (VOC) were detected in this sample."
- o Table 2 summarizes test procedures used.
- Table 3 lists the types of compounds which can be detected by the test procedures employed. This table also lists Practical Quantitation Limits (PQL) for each compound in both water and soil samples.
- Additional data which might accompany this report includes chromatograms, Quality Assurance data sheets, Chain-of-Custody forms and allowable contaminant limits (if available). This data is analysis support documentation.
- o The following support data is enclosed.
  - Chromatograms of the analysis
  - National Drinking Water Standards
- o The soil sample exhibited headspace as is normal for this type of sample collection.

Inde

LABORATORY DIRECTOR

# TABLE 1ANALYTICAL RESULTS - VOC

| Client Description Groundwater from Bore Holes and Soll |             |             |             |                |             |              |
|---------------------------------------------------------|-------------|-------------|-------------|----------------|-------------|--------------|
| Sample Type                                             |             | Analy       | ical Mo     | ethod <u>6</u> | 01 + 602    |              |
|                                                         |             |             |             | CONCENT        |             |              |
|                                                         |             |             |             | -CONCENT       | KATION      |              |
|                                                         | GROUN       | DWATERS     | (µg/l)      |                | SOIL (ppm a | as received) |
|                                                         |             |             | DUPLI       | CATES          | DUPLI       | CATES        |
| PARAMETER                                               | <u>BH-1</u> | <u>BH-2</u> | <u>BH-3</u> | <u>BH-3</u>    | BH-2        | BH-2         |
| c-1,2-Dichloroethylene                                  | ND          | ND          | 4.4         | 4.4            | ND          | ND           |
| 1,1,1-Trichloroethane                                   | <1          | ND          | ND          | ND             | ND          | ND           |
| Tetrachloroethylene                                     | 2.7         | ND          | ND          | ND             | ND          | ND           |
| Toluene                                                 | 1.9         | ND          | ND          | ND             | ND          | ND           |
| PQL                                                     | X1          | X1          | X1          | X1             | X1          | X1           |
| Fuel Hydrocarbons                                       | ND          | 760         | ND          | ND             | ND          | ND           |
| Moisture (%)                                            | -           | -           | -           | -              | 16.1        | -            |

#### NOTES:

- 1. ND = Not Detected
- 2.  $\leq$  = Detected but below the PQL
- 3. The Trip Blank exhibited no detectable levels of VOC
- 4. GC/MS confirmation of groundwaters from BH-1 and BH-2 was performed.
- 5. The fuel hydrocarbon in groundwater BH-2 is quantitated as #2 Fuel Oil but not so specifically identified. The GC fingerprint of this species resembles gasoline but no detectable levels of Benzene, Toluene and Xylenes were present. GC/MS showed that compound classes such as alkanes and alkenes were present. Trace levels of naphthalenes were also noted. The probable identity of this fuel hydrocarbon is gasoline.

PQL Discussion: PQL (Detection Limit) varies with individual compounds, the type of sample, laboratory treatment (dilutions) and method of analysis (601 + 602 or 624).

PQL for clean samples is shown in Table 3. The PQL value shown above, expressed as X(#), is the value by which the Table 3 PQL is to be multiplied in order to determine the "Detection Limit" for individual compounds for the sample in question.

Revised (10-11-88)

#### TABLE 2

#### REFERENCE METHODS/ANALYTICAL PROCEDURES

#### REFERENCES

- "Test Methods: Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater", USEPA-600/4-82-057, July 1982, Methods 601, 602, 624
- "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods", SW-846, Third Edition, November 1986

#### ANALYTICAL PROCEDURES

VOC of interest are liberated from the matrix by use of Purge and Trap procedures. Surrogate compounds are employed for each Purge and Trap run.

The effluent from the gas chromatograph is monitored by Photoionization and Hall 700A Electrolytic Conductivity Detectors operating in series. Component separation is achieved by a SPB-1 capillary column, 60m x 0.75 mm I.D.

In certain situations, confirmation of the sample response is performed by use of Mass Spectrometry.

Analysis Method Numbers are different in different reference manuals even though the procedures used are essentially the same. With respect to this analysis, Method Numbers are referenced to "Test Methods: Methods For Organic Chemical Analysis of Municipal and Industrial Wastewater", USEPA 600/4-82-057, July 1982. The samples reported herein were analyzed by the following methods:

GC/Hall/PID (Method 601 + 602) X

GC/MS (Method 624)

#### SUPPORTING DATA

If GC tracings or GC/MS data is supplied with this report, surrogate/internal standards are identified by the letters (S) and/or (IS).

#### TABLE 3

### PARTIAL LISTING - VOLATILE ORGANIC COMPOUNDS DETECTABLE BY PROCEDURES LISTED IN TABLE 2 AND PRACTICAL QUANTITATION LIMITS (PQL)

|   |                           | Practical Quantitation Limits (PQL) |      |           |      |  |  |
|---|---------------------------|-------------------------------------|------|-----------|------|--|--|
|   |                           | Water (µ                            | g/l) | Soils (pp | m)   |  |  |
|   | Compound Name             | 601 + 602                           | 624  | 601 + 602 | 624  |  |  |
|   | Acetone                   | 10                                  | 10   | 0.5       | 0.5  |  |  |
|   | Acrolein                  |                                     | 10   |           | 0.5  |  |  |
|   | Acrylonitrile             |                                     | 10   |           | 0.5  |  |  |
|   | Benzene                   | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | Bromodichloromethane      | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | Bromoform                 | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | Bromomethane              | 1                                   | 10   | 0.05      | 0.5  |  |  |
|   | Carbon Disulfide          | -                                   |      | 0.02      | 0 25 |  |  |
|   | Carbon Tetrachloride      | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | Chlorohenzene             | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | Chloroethane              | 1                                   | 10   | 0.05      | 0.20 |  |  |
|   | 2 Chloroethylyinyl Ether  | 10                                  | 5    | 0.05      | 0.25 |  |  |
|   | Chloroform                | 10                                  | 5    | 0.05      | 0.25 |  |  |
|   | Chloromothene             | 1                                   | 10   | 0.05      | 0.20 |  |  |
|   | Dibromochloromothono      | 1                                   | 10   | 0.05      | 0.5  |  |  |
| I | 1.2 Dibromosthere         | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   |                           | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   |                           | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | 1,2-Dichlorobenzene       | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | 1, 3-Dichlorobenzene      | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | 1,4-Dichlorobenzene       | 1                                   | 5    | 0.05      | 0.25 |  |  |
| ļ | Dichlorodifluoromethane   | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | 1,1-Dichloroethane        | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | 1,2-Dichloroethane        | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | 1,1-Dichloroethylene      | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | c-1,2-Dichloroethylene    | 1                                   | 5    | 0.05      | 0.25 |  |  |
| ł | t-1,2-Dichloroethylene    | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | 1,2-Dichloropropane       | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | c-1,2-Dichloropropene     | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | t-1,2-Dichloropropene     | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | Ethyl Benzene             | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | 2-Hexanone                | 10                                  | 10   | 0.5       | 0.5  |  |  |
|   | Iodomethane               |                                     |      |           |      |  |  |
|   | Methylene Chloride        | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | Methyl Ethyl Ketone       | 10                                  | 10   | 0.5       | 0.5  |  |  |
|   | Methyl Isobutyl Ketone    | 10                                  | 10   | 0.5       | 0.5  |  |  |
|   | Styrene                   | 1                                   | 5    | 0.05      | 0.25 |  |  |
| l | 1,1,2,2-Tetrachloroethane | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | Tetrachloroethylene       | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | Tetrahydrofuran           | 10                                  | 10   | 0.5       | 0.5  |  |  |
|   | Toluene                   | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | 1.1.1-Trichloroethane     | 1                                   | 5    | 0.05      | 0.25 |  |  |
|   | 1.1.2-Trichloroethane     | ī                                   | 5    | 0.05      | 0.25 |  |  |
|   | Trichloroethylene         | 1                                   | 5    | 0.05      | 0 25 |  |  |
| 1 | Trichlorofluoromethane    | ī                                   | 5    | 0.05      | 0.23 |  |  |
|   | 1.2.3-Trichloropropane    | 1                                   |      | 0.05      | 0.25 |  |  |
|   | Vinvl Acetate             | 10                                  | 10   | 0.5       | 0.23 |  |  |
|   | Vinyl Chloride            | 2                                   | ŤŠ   | 0.1       | 0.25 |  |  |
|   | Xylenes                   | ī                                   | 5    | 0.05      | 0.25 |  |  |
|   | -                         |                                     | -    |           |      |  |  |

In addition, fuel type hydrocarbons such as gasoline, fuel oil and kerosene and industrial mixtures such as naphtha and thinners are also detected by these procedures.

Note: Soil PQL is on an "as received basis". Both water and soil PQL values are for CLEAN samples. PQL increases with sample matrix problems.

## EIS ENVIRONMENTAL ENGINEERS, INC. QUALITY ASSURANCE DATA SHEET VOLATILE ORGANIC COMPOUNDS

| QC  | Descr | iption:  | Surrogate Recovery |
|-----|-------|----------|--------------------|
| EIS | Lab   | Numbers: | 5081H - 5085H      |

Date Analyzed: 10-6-88

:

|               | 1       |           | RECO      | OVERY DAT   | ra *    |           |           |
|---------------|---------|-----------|-----------|-------------|---------|-----------|-----------|
| Client Sample |         | Method (  | 1         | Method 624  |         |           |           |
| Description   | <u></u> | <u>S2</u> | <u>S3</u> | <u></u> \$4 | <u></u> | <u>S2</u> | <u>S3</u> |
| GW B-1        | 101     | 98        | 97        | 102         |         |           |           |
| GW B-2        | 95      | 107       | *         | 113         |         |           |           |
| GW B-3        | 95      | 105       | 97        | 103         |         |           |           |
| Soil B-2      | 98      | 109       | 100       | 105         |         |           |           |
| Trip Blank    | 94      | 88        | 100       | 93          |         |           |           |

# \* SURROGATE COMPOUND DESCRIPTIONS AND QUALITY CONTROL LIMITS

| Compound #     | METHOD 601 + 602<br>Compound Name | QC Limits |
|----------------|-----------------------------------|-----------|
| S1             | 1-Bromo-2-chloroethane            | 70 - 130  |
| 52             | 1.4-Dichlorobutane                | 70 - 130  |
| 53             | Toluene, d6                       | 70 - 130  |
| S4             | 1,9-Decadiene                     | 70 - 130  |
|                | METHOD 624                        |           |
| Compound #     | Compound Name                     | QC Limits |
| <u>S1</u>      | 1,2-Dichloroethane,d4             | 70 - 130  |
| S2             | Toluene, d6                       | 70 - 130  |
| <b>S</b> 3     | Bromofluorobenzene                | 70 - 130  |
| Rev (06-13-88) |                                   |           |

Page 1 of 2

## EIS ENVIRONMENTAL ENGINEERS, INC. QUALITY ASSURANCE DATA SHEET VOLATILE ORGANIC COMPOUNDS

| QC Description:      | Check Standard    |
|----------------------|-------------------|
| Client Sample Group: | Transwestern Site |
| EIS Lab Numbers:     | 5081H - 5085H     |
| Date Analyzed:       | 10-6-88           |

Analysis Method: <u>601 + 602</u> Concentration Units: <u>µg/1</u>

## SURROGATE RESPONSES

| EPA Methods 601 + 6    | 502   | EPA Method 624        |       | QA/QC  |
|------------------------|-------|-----------------------|-------|--------|
| Compound Name          | % Rec | Compound Name         | % Rec | Limits |
| 1-Bromo-2-chloroethane | 111   | 1,2-Dichloroethane,d4 |       | 70-130 |
| 1,4-Dichlorobutane     | 112   | Toluene,d6            |       | 70-130 |
| Toluene,d6             | 98    | Bromofluorobenzene    |       | 70-130 |
| 1,9-Decadiene          | 118   |                       |       | 70-130 |

## SAMPLE RESULTS

| Parameter               | Concent<br>True | tration<br>Found | Recovery<br><u>%</u> | 624 Respondent | nse Facto<br>Found | ors (RF)<br><u>% RSD</u> |
|-------------------------|-----------------|------------------|----------------------|----------------|--------------------|--------------------------|
| Acetone                 | 56.2            | 58.0             | 103                  |                |                    |                          |
| Acrolein                |                 |                  |                      |                |                    |                          |
| Acrylonitrile           |                 |                  |                      |                |                    |                          |
| Benzene                 | 10.8            | 11.3             | 105                  |                |                    |                          |
| Bromoform **            | 15.6            | 12.0             | 77                   | 0.175          |                    |                          |
| Bromodichloromethane    |                 |                  |                      |                |                    |                          |
| Bromomethane            |                 |                  |                      |                |                    |                          |
| Carbon Disulfide        |                 |                  |                      |                |                    |                          |
| Carbon Tetrachloride    | 9.8             | 8.7              | 89                   |                |                    |                          |
| Chlorobenzene **        | 12.3            | 11.8             | 96                   | 1.324          |                    |                          |
| Chlorodibromomethane    | 12.1            | 11.0             | 91                   |                |                    |                          |
| Chloroethane            |                 |                  |                      |                |                    |                          |
| 2-Chloroethylvinylether |                 |                  |                      |                |                    |                          |
| Chloroform *            | 9.5             | 11.2             | 118                  | 7.525          |                    |                          |
| 1-Chlorohexan           |                 |                  |                      |                |                    |                          |
| Chloromethane **        |                 |                  |                      |                |                    |                          |
| 2-Chlorotoluene         |                 |                  |                      |                |                    |                          |
| 4-Chlorotoluene         |                 |                  |                      |                |                    |                          |
| 1,2-Dibromoethane       |                 |                  |                      |                |                    |                          |
| Dibromomethane          |                 |                  |                      |                |                    |                          |
| 1,2-Dichlorobenzene     | 13.0            | 13.8             | 106                  |                |                    |                          |
| 1,3-Dichlorobenzene     |                 |                  |                      |                |                    |                          |
| 1,4-Dichlorobenzene     | 21.2            | 18.6             | 88                   |                |                    |                          |
| 1,4-bichloro-2-butane   |                 |                  |                      |                |                    |                          |
| Dichlorodifluoromethane |                 |                  |                      |                |                    |                          |
| 1,1-Dichloroethane **   | 9.1             | 9.6              | 105                  | 6.852          |                    |                          |
| 1,2-Dichloroethane      | 7.5             | 7.4              | 99                   |                |                    |                          |
| 1,1-Dichloroethene *    |                 |                  |                      | 3.874          |                    |                          |
| c-1,2-Dichloroethene    | 9.8             | 8.4              | 86                   | •              |                    |                          |
| t-1,2-Dichloroethene    |                 |                  |                      |                |                    |                          |

## EIS ENVIRONMENTAL ENGINEERS, INC. QUALITY ASSURANCE DATA SHEET VOLATILE ORGANIC COMPOUNDS Check Standard Continuation

|                                 | Concentration |       | Recovery | 624 Response Factors (RF) |       |       |
|---------------------------------|---------------|-------|----------|---------------------------|-------|-------|
| Parameter                       | True          | Found | %        | Initial                   | Found | % RSD |
| 1,2-Dichloropropane *           | 10.3          | 10.5  | 102      | 0.408                     |       |       |
| 1,3-Dichloropropane             |               |       |          |                           |       |       |
| c-1,2-Dichloropropene           |               |       |          |                           |       |       |
| t-1,2-Dichloropropene           |               |       |          |                           |       |       |
| Diethyl Ether                   |               |       |          |                           |       |       |
| Ethylbenzene *                  | 10.7          | 9.7   | 91       | 2.548                     |       |       |
| Ethyl Methacrylate              |               |       |          |                           |       |       |
| 2-Hexanone                      | 42.0          | 41.1  | 98       |                           |       |       |
| Iodomethane                     |               |       |          |                           |       |       |
| Methylene Chloride              | 10.4          | 11.7  | 113      |                           |       |       |
| Methyl Ethyl Ketone             | 38.6          | 35.8  | 93       |                           |       |       |
| Methyl Isobutyl Ketone          | 37.8          | 30.5  | 81       |                           |       |       |
| Methyl Methacrylate             |               |       |          |                           |       |       |
| Paraldehyde                     |               |       |          |                           |       |       |
| Styrene                         | 11.7          | 11.7  | 100      |                           |       |       |
| 1,1,2,2-Tetrachloroethane**     |               |       |          | 0.403                     |       |       |
| Tetrachloroethylene             | 11.2          | 10.1  | 90       |                           |       |       |
| Tetrahydrofuran                 | 71.8          | 56.3  | 78       |                           |       |       |
| Toluene *                       | 10.7          | 9.8   | 92       | 2.372                     |       |       |
| 1,1,1-Trichloroethane           | 12.6          | 12.6  | 100      |                           |       |       |
| 1,1,2-Trichloroethane           | 11.8          | 11.2  | 95       |                           |       |       |
| Trichloroethylene               | 10.2          | 9.3   | 91       |                           |       |       |
| Trichlorofluoromethane          |               |       |          |                           |       |       |
| 1,2,3-Trichloropropane          |               |       |          |                           |       |       |
| 1,1,2-Trichlorotrilfluoroethane |               |       |          |                           |       |       |
| Vinyl Acetate                   |               |       |          |                           |       |       |
| Vinyl Chloride *                |               |       |          | 0.945                     |       |       |
| m-Xylene                        |               |       |          |                           |       |       |
| o-Xylene                        | 11.1          | 11.0  | 99       |                           |       |       |
| p-Xylene                        | 10.8          | 10.5  | 97       |                           |       |       |

## QA/QC Interpretation

,

- \* Calibration Check Compound (CCC) with maximum % RSD = 30%
- \*\* System Performance Check Compound (SPCC) with minimum RF = 0.3 (0.25 for Bromoform)

## EIS ENVIRONMENTAL ENGINEERS, INC. QUALITY ASSURANCE DATA SHEET VOLATILE ORGANIC COMPOUNDS

QC Description:Duplicate Matrix SpikeClient Sample Group:Transwestern SiteEIS Lab Numbers:5081H-5085HDate Analyzed:10-6-88

### SURROGATE RESPONSES

| EPA Methods 601 +      | 602     | EPA Method 624        | QA/QC |        |
|------------------------|---------|-----------------------|-------|--------|
| Compound Name          | % Rec   | Compound Name         | % Rec | Limits |
| 1-Bromo-2-chloroethane | 97/97   | 1,2-Dichloroethane,d4 |       | 70-130 |
| 1,4-Dichlorobutane     | 106/109 | Toluene,d6            |       | 70-130 |
| Toluene,d6             | 100/98  | Bromofluorobenzene    |       | 70-130 |
| 1,9-Decadiene          | 90/90   |                       |       | 70-130 |

#### SAMPLE RESULTS

|                         | 0     | De el  | 3              |                              | Rec    | overy             |
|-------------------------|-------|--------|----------------|------------------------------|--------|-------------------|
| Parameter               | Level | ground | Amount R<br>#1 | <u>ecovered</u><br><u>#2</u> | ل<br>R | ata<br><u>RPD</u> |
| Acetone                 |       |        |                |                              |        |                   |
| Acrolein                |       |        |                |                              |        |                   |
| Acrylonitrile           |       |        |                |                              |        |                   |
| Benzene                 |       |        |                |                              |        |                   |
| Bromoform               | 17.3  |        | 12.1           | 13.4                         | 74     | 10                |
| Bromodichloromethane    |       |        |                |                              |        |                   |
| Bromomethane            |       |        |                |                              |        |                   |
| Carbon Disulfide        |       |        |                |                              |        |                   |
| Carbon Tetrachloride    |       |        |                |                              |        |                   |
| Chlorobenzene           |       |        |                |                              |        |                   |
| Chlorodibromomethane    |       |        |                |                              |        |                   |
| Chloroethane            |       |        |                |                              |        |                   |
| 2-Chloroethylvinylether |       |        |                |                              |        |                   |
|                         |       |        |                |                              |        |                   |
| Chloromothana           |       |        |                |                              |        |                   |
|                         |       |        |                |                              |        |                   |
| A-Chlorotoluene         |       |        |                |                              |        |                   |
| 1 2-Dichlorobenzene     |       |        |                |                              |        |                   |
| 1,3-Dichlorobenzene     |       |        |                |                              |        |                   |
| 1.4-Dichlorobenzene     |       |        |                |                              |        |                   |
| 1,4-Bichloro-2-butane   |       |        |                |                              |        |                   |
| Dichlorodifluoromethane |       |        |                |                              |        |                   |
| 1,1-Dichloroethane      |       |        |                |                              |        |                   |
| 1,2-Dichloroethane      |       |        |                |                              |        |                   |
| 1,1-Dichloroethene      | 16.9  | -      | 19.6           | 20.6                         | 119    | 5                 |
| c-1,2-Dichloroethene    | 17.3  | -      | 18.4           | 18.9                         | 108    | 3                 |
| t-1,2-Dichloroethene    |       |        |                |                              |        |                   |

Page 2 of 2

EIS ENVIRONMENTAL ENGINEERS, INC. QUALITY ASSURANCE DATA SHEET VOLATILE ORGANIC COMPOUNDS Duplicate Matrix Spike Continuation

|                                                                                                                                                                                                                                                                                                                | Snike        | Back-  | Amount       | Recovered    | Reco     | overy  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|--------------|--------------|----------|--------|
| Parameter                                                                                                                                                                                                                                                                                                      | Level        | ground | #1           | #2           | 8R       | RPD    |
| 1,2-Dichloropropane<br>1-3,Dichloropropane<br>c-1,2-Dichloropropene<br>t-1,2-Dichloropropene<br>Diethyl Ether<br>Ethylbenzene<br>Ethyl Methacrylate<br>2-Hexanone<br>Iodomethane<br>Methylene Chloride<br>Methyl Ethyl Ketone<br>Methyl Isobutyl Ketone<br>Paraldehyde<br>Styrene<br>1,1,2,2-Tetrachloroethane |              |        |              |              |          |        |
| Tetrachloroethylene<br>Tetrahydrofuran                                                                                                                                                                                                                                                                         | 16.9         | -      | 16.6         | 18.4         | 104      | 10     |
| Toluene<br>1,1,1-Trichloroethane<br>1,1,2-Trichloroethane<br>Trichloroethylene<br>Trichlorofluoromethane<br>1,2,3-Trichloropropane<br>1,1,2-Trichlorotril-<br>fluoroethane<br>Vinyl Acetate<br>Vinyl Acetate<br>Vinyl Chloride<br>m-Xylene<br>o-Xylene<br>p-Xylene                                             | 16.8<br>17.1 | -      | 14.9<br>15.5 | 15.4<br>15.5 | 90<br>91 | 3<br>0 |

Rev (10-13-88)

## NATIONAL DRINKING WATER STANDARDS

| Deremeter                                                                                                                                                                                                                                             | (mg/l<br>Primary<br>Standards<br>(Health                                                                                               | Concentration<br>unless otherwis<br>Secondary<br>Standards<br>(Aesthetic | e shown)<br>Recommended<br>Limits<br>Other                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------|
| Arsenic<br>Barium<br>Cadmium<br>Chromium (T)<br>Lead<br>Mercury<br>Selenium<br>Silver<br>Fluoride<br>Nitrate (as Nitrogen)<br>Endrin<br>Lindane<br>Methoxychlor<br>Toxaphene<br>2,4-D<br>Silvex<br>Tot.Coliform (Colonies/100ml)<br>Trihalomethanes * | 0.05<br>1.0<br>0.010<br>0.05<br>0.05<br>0.002<br>0.01<br>0.05<br>4<br>10<br>0.0002<br>0.004<br>0.1<br>0.005<br>0.1<br>0.01<br>0<br>0.1 | 2                                                                        | Substances                                                          |
| Chloride<br>Copper<br>Detergents (foaming Agents)<br>Iron<br>Manganese<br>pH (pH units)<br>Sulfate<br>Total Dissolved Solids<br>Zinc                                                                                                                  |                                                                                                                                        | $250 \\ 1 \\ 0.5 \\ 0.3 \\ 0.05 \\ 6.5 - 8.5 \\ 250 \\ 500 \\ 5$         |                                                                     |
| Benzene<br>Vinyl Chloride<br>Carbon Tetrachloride<br>1,2-Dichloroethane<br>Trichloroethylene<br>1,1-Dichloroethylene<br>1,1,1-Trichloroethane<br>1,4-Dichlorobenzene                                                                                  |                                                                                                                                        |                                                                          | 0.005<br>0.002<br>0.005<br>0.005<br>0.005<br>0.007<br>0.20<br>0.075 |

\* Chloroform, Chlorodibromomethane, Bromodichloromethane, Bromoform

## S.B.DEPT. of ECON.DEV. VS AROMATIC VOC

| Chrom                      | atogram | Data File                                                | Sample Name                                                                                    | Start Time (min)                             | Stop Time (min)                                    | Scale Range (mV)                     | Scale Offset (HU)               |                                        |
|----------------------------|---------|----------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|--------------------------------------|---------------------------------|----------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6 |         | WP1053<br>WP1046<br>WP1051<br>WP1047<br>WP1048<br>WP1050 | 5081H (5n1)<br>510 092388 (L2)<br>5082H (5n1)<br>5083H (5n1)<br>5085H (5n1)<br>5085H (5n1) LAB | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 40.00<br>40.00<br>40.00<br>40.00<br>40.00<br>40.00 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 4<br>-4<br>-4<br>-4<br>-4<br>-4 |                                        |
| 10.0                       |         | TRip Blank<br>(DI)<br>+Surrogates                        | Aromatic STD<br>~10 ppb                                                                        | B                                            |                                                    | B-2-4                                | B-3                             | GRound Waters<br>B-3<br>Dualizate      |
| 00 20                      |         |                                                          |                                                                                                |                                              |                                                    |                                      |                                 | 98/35/9                                |
| .00                        |         |                                                          |                                                                                                |                                              |                                                    |                                      |                                 | ~~~~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ |
| 30.00                      |         |                                                          | -                                                                                              |                                              |                                                    |                                      |                                 |                                        |

## S.B.DEPT. of ECON.DEV.SOIL VS AROMATIC

| Chronatogram | Data file | Sample Hame      | Start Tine (nin) | Stop Time (min) | Scale Range (nV) | Scale Offset (nU) |
|--------------|-----------|------------------|------------------|-----------------|------------------|-------------------|
| ]            | UPID29    | MB (1/50+SUR)    | D. 00            | 40.00           | 4                | -4                |
| 2            | UP1025    | STD 092388 (L2)  | 0,00             | 40.00           | 4                | -4                |
| 3            | VPID33    | 5004H (1/50)     | 0.00             | 40.00           | 4                | -4                |
| 4            | VPID36    | 5084H (1750) LAB | 0.00             | 40.00           | 4                | -4                |
| 5            | UP1037    | FUELOIL SID      | 9.00             | 40.00           | 4                | -1                |





## S.B.DEPT.of ECON.DEV.SOIL VS CHLORINATED

# S.B.DEPT. of ECON.DEV. VS CHLORINATED VOC

.

.

\_\_\_\_

| $\frac{1}{2}  (WEDS) \\ \frac{1}{2}  (WEDS) \\ \frac{1}{3}  ($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chronatogran               | Data File                                                | Sample Name                                                                                    | Start line (nin)                                     | Stop Time (min)                                             | Scale Range (mU)                 | Scale Offset (nV)          |                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|----------------------------------|----------------------------|--------------------------------------------------|
| $\begin{array}{c c} & \mathcal{R}_{ound-hundreds} & 9/z \theta / s \\ & \mathcal{B}_{-3} \\ \mathcal{B}_{$ | 1<br>2<br>3<br>4<br>5<br>6 | VHED53<br>VHED56<br>VHED51<br>VHED47<br>VHED49<br>VHED50 | 5081H (5ml)<br>STD 092388 (L2)<br>5082H (5ml)<br>5083H (5ml)<br>5085H (5ml)<br>5085H (5ml) LAB | 0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00 | 40,00<br>40,00<br>40,00<br>40,00<br>40,00<br>40,00<br>40,00 | 65<br>65<br>65<br>65<br>65<br>65 | 11<br>11<br>11<br>11<br>11 |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.00 20.00 30.00          | TRip Blank 5 5<br>LOZ)<br>+ SurRegates                   | ChildRinated STD<br>~ 10ppb                                                                    |                                                      |                                                             |                                  | Β-3                        | GRoundwaters 9/28/28 5<br>B-3 5<br>Duplicate 5 5 |











## APPENDIX B

\_\_\_\_

----

1

# PID ANALYZER CALIBRATION AND FIELD ANALYSIS RECORDS



Page / of

## SOIL VAPOR FIELD ANALYSIS RECORD

PROJECT NAME Hydrogeologic Study-Transwestern Sit PROJECT NUMBER 1456-01 LOCATION AND PURPOSE OF SURVEY Transwestern Site, South Bend, IN. Three Four Soil borings, head-space analysis with PID, 1 Soil Voc.

| ANALY       | ZER/LAM         | p <u>HNV</u>    | (, 11.7    | eV lamp.           | DA'          | re <u>9</u> - | 28-88   |                                            |
|-------------|-----------------|-----------------|------------|--------------------|--------------|---------------|---------|--------------------------------------------|
| Site<br>No. | Sample<br>Type* | Sample<br>Depth | Scale Peak | Readings<br>Steady | HNU<br>Range | PPM<br>**     | Time    | Location/Comments                          |
| B-1         | AA-B            | NA              | 0.4        | 0.4                | 0-70         | 0.4           | 7=15Am  | At Boring # 2 (Background<br>Defined os 2) |
| 11          | 55-HS           | 0-1.5           | 0.4        | Or4                | 0-20         |               | 7:35    |                                            |
| 15          |                 | 3.0-4.5         | 0,4        | 0.3                | 0-70         |               | 7:45An  | VOC Soil Sample collected.                 |
| (/          | ЛА-В            | NA              | 0.4        | 0.4                | 0-20         | 0.4           | 7:55 Ar | Air & 10 feat from bore.                   |
| 17          | 95-HS           | 6.0-7.9         | 0.4        | 0.4                | 0-20         |               | 8:15 Am |                                            |
| υ,          | 11              | 9-10.5          | 0.4        | 0.4                | 0-20         |               | 8=70Am  |                                            |
| 11          | t )             | 12 13.5         | 0.4        | 0.4                | 0-20         |               | 8:25 Am |                                            |
| l,          | η ι             | 15-16-5         | 0.4        | 0.4                | 0-20         |               | 8:30    |                                            |
| 11          | 11              | 18-19.5         | ·0. Y      | 0.4                | 0-70         |               | 8:35    |                                            |
| 17          | АД-В            | ŇA              | 0.4        | 0.4                | 0-20         | 0.4           | 8:45    |                                            |
| 11          | 5 <b>9</b> -HS  | 21-27-5         | 0.4        | 0.4                | 0-70         |               | 8:40    |                                            |
| 11          | 11              | 24-25.5         | 0.4        | 0.4                | 0-20         |               | 8:50    |                                            |
| 17          | ) (             | 77-78.5         | 0-4        | 0.4                | 0-70         |               | 8:55    | Water @ 28.0'                              |
| × 1         | ۱۱              | 30-31.5         | 0.4        | 0.4                | 0-70         |               | 9:00    |                                            |
| 11          | AA-B            | NA              | 0.4        | 0.4                | 0-20         | 0.4           | 9:05    |                                            |
| <u>B-2</u>  | AA-B            | NA              | 0.4        | 0.4                | 0-20         | 0.4           | 11:00   | B-2 (NE Corner of<br>Transversion Elen     |
| 11          | 55 HS           | 0-1.5           | 0.4        | 0.4                | 0-20         |               | 11:00   |                                            |

\* Sample Type = HP (Hole Punch) HA (Hand Auger) AA (Ambient Air)
SS(Split-spoon) HS (Head Space - include minutes sitting i.e. HS-5)
B (Background)

Comments: Inseather: overcast, windy, 2.55% ?:25 ton. PID measurement tood approximately Sminute dite alter the ad enoung with April

\*\* ppm as Isobutylene unless otherwise specified

2 of Page J.C. Sporleder

SOIL VAPOR FIELD ANALYSIS RECORD

| Site         | Sample     | Sample  | Scale | Readings  | нии   | PPM                    |        |                                                           |
|--------------|------------|---------|-------|-----------|-------|------------------------|--------|-----------------------------------------------------------|
| No.          | Type*      | Depth   | Peak  | Steady    | Range | **                     | Time   | Location/Comments                                         |
| Ŗ-2          | 55-HS      | 3-4.5   | 0.4   | 0.4       | 0-70  |                        | 11=10  | B-Z (continued).                                          |
| 11           | 11         | 6-7.5   | 0.4   | 0.4       | 17    |                        | 11:15  |                                                           |
| <u>(</u> 1   | <b>,</b> J | 9-10.5  | 0.4   | 0.4       | Ţ1    |                        | 11=70  |                                                           |
| 11           | 11         | 12-13.5 | 0.4   | 0.4       | U     |                        | 11:25  | Collected VOC Soil Sample.                                |
| 11           | 11         | 15-16.5 | 0.4   | 0.4       | 1,    |                        | 11:30  |                                                           |
| 11           | 17         | 18-195  | 0.4   | 0.4       | 1 '   |                        | 11:35  |                                                           |
| 11           | A A-B      | NA      | 0.4   | 0.4       | 17    | 0.4                    | 11:37  |                                                           |
| • •          | 55-HS      | 21-27.5 | 0.4   | 0.4       | 1 I   |                        | 11:40  |                                                           |
| 11           | 11         | 74-75.5 | 0.9   | 0.4       | 11    |                        | 11:45  | VOC Soil Collected.                                       |
| 17           | ١,         | 77-78.5 | 6.0   | 0.6       | 12    |                        | 11=55  | VOC Soil collocted. A<br>(Higher of B-2 complex culmittee |
| FL           | A A-B      | NA      | 0.5   | 0.5       | 1'    | 0.5                    | .12:05 |                                                           |
| 3-3          | AA-B       | NA      | 0.8   | 0.4       | 0+20  | 0.4-0.8<br>Defined=0.8 | 2=10   | Borning 3, East side (Plus)                               |
| 1) I         | 55-45      | 0-1.5   | 0.5   | 0.4       | 1,    |                        | Z=10   |                                                           |
| ı(           | 17         | 3-4.5   | 0.4   | 0.3       | t i   |                        | Z= S   |                                                           |
| 10           | 1          | 6-7.5   | 0.4   | 0.4       | 11    |                        | 2:20   |                                                           |
| 11           | 11         | 7-10.5  | D. Y  | 0.4       | 11    |                        | 2:25   |                                                           |
| ()           | (,         | 12-13.5 | 0-4   | 0.4       | 11    |                        | 7:30   | ······································                    |
| 11           | AA-B       | NA      | 0.4   | 0.4       | 1     | 0.4                    | Z: 35  |                                                           |
| ti -         | 56-HS      | 15-16.5 | 0-4   | 0.4       | 11    |                        | 7:35   |                                                           |
| <u>, ,  </u> | 1.         | 18-19.5 | 0.4   | 0.4       | 11    |                        | 7= 50  |                                                           |
| v            | (7         | 21-22.5 | 0.4   | <u>D4</u> | (1    |                        | 7:55   |                                                           |

\* Sample Type = HP (Hole Punch) HA (Hand Auger) AA (Ambient Air) SS(Split-spoon) HS (Head Space - include minutes sitting i.e. HS-5) B (Background)

Page 3 of \_\_\_\_\_

SOIL VAPOR FIELD ANALYSIS RECORD

| Sito | Sample | Sample  | Scale                                 | Readings | нын   | ррм           |       |                           |
|------|--------|---------|---------------------------------------|----------|-------|---------------|-------|---------------------------|
| No.  | Type*  | Depth   | Peak                                  | Steady   | Range | **            | Time  | Location/Commen           |
| B-3  | \$5-HS | 74-25.5 | 0.4                                   | 0.4      | D-70  |               | 3:00  | Boring 3 (Continued)      |
| 1/   | 17     | 27-28.5 | 0.4                                   | 0.4      | 1)    |               | 3=10  | Collected VOC Seil Sumple |
| 10   | A A-B  | WA      | 0.4                                   | 0.4      | \/    | 0.4           | 3:15  |                           |
|      |        |         |                                       |          |       | _ <del></del> |       |                           |
|      |        |         |                                       |          |       |               |       |                           |
|      |        |         |                                       |          |       |               |       |                           |
|      |        |         |                                       |          |       |               |       |                           |
|      |        |         |                                       |          |       | ·             |       |                           |
|      |        | ·       |                                       |          |       |               |       |                           |
|      |        |         |                                       |          |       |               |       |                           |
|      |        |         |                                       |          |       |               |       |                           |
|      |        |         |                                       |          |       |               |       |                           |
|      |        |         |                                       |          |       |               |       |                           |
|      |        |         | · · · · · · · · · · · · · · · · · · · |          |       |               |       |                           |
|      |        |         |                                       |          |       |               |       |                           |
|      |        |         |                                       |          |       |               |       |                           |
|      |        | ······  | L                                     |          |       |               |       |                           |
|      |        |         |                                       |          |       |               | <br>  | -                         |
|      |        |         |                                       |          |       |               |       |                           |
|      |        |         |                                       |          |       |               | · , · |                           |
|      |        |         |                                       |          |       |               |       |                           |

\* Sample Type = HP (Hole Punch) HA (Hand Auger) AA (Ambient Air) SS(Split-spoon) HS (Head Space - include minutes sitting i.e. HS-5) B (Background)



# PHOTOIONIZATION ANALYZER



COMMENTS:

APPENDIX C

-----

- -- - - -

•

# SUBSURFACE EXPLORATION LOGS

| <b>Boring No.</b> $\frac{B-1}{Sheet}$<br>Sheet 1 of 2<br>Project No. 1456-01                   |
|------------------------------------------------------------------------------------------------|
| SUBSURFACE EXPLORATION LOG                                                                     |
| Client South Bend Dept of Economic Par Site Location Transwestern Site                         |
| Logged By J.C. Sporledes Date Started <u>9-28-88</u> Date Completed                            |
| Boring Location B-1, See Site Map Hammer Wt. 140 lbs                                           |
| Boring Method HOLLOW STEM AUGER Drop Distance 30"                                              |
| Sampler Type SPLIT SPOON Sampler Size 18"                                                      |
| Datum Surface Elevation                                                                        |
| GROUNDWATER DEPTH: While Drilling $\frac{78.0'}{1000}$ Ft. At Completion $\frac{78}{1000}$ Ft. |
| After Completion 1/2 Hrs. Ft; Hrs. Ft; Hrs. Ft; Hrs. Ft.                                       |
| Sample Data Interval Log Soil Description                                                      |
| No. From To Inches Blows/6" From To At Suffrage Control of                                     |

|          | NO.       | From      | То            | Recov. | Blows/6" | From<br>O | То<br> | At Surface: Gravel & rinder Slag<br>Circle diam.                     |
|----------|-----------|-----------|---------------|--------|----------|-----------|--------|----------------------------------------------------------------------|
|          | 1         | Ü         | 1.5           | 15     | 89-5     |           |        | 2" +01": Silty Loam with much (= 3000)                               |
|          | 2         | 3.0       | 4.5           | 18     | 3-3-4    |           |        | Black Purlicles of churched curlet - C<br>Ang, (15 - Sent-Size,      |
|          | 3         | 6.0       | 7.5           | 13     | 2-2-1    | 1         | 2      | Loam a 4000 Nod Sand Lenande                                         |
|          | 4         | 7.0       | 10.5          | 13     | 3-7-9    |           |        | Sitt. it intercontroposits<br>Part Yellowigh brows, finalle          |
|          | 5:-       | 12.0      | 13.5          | 18     | 1-1-2    | 2         | 3      | Clabrus Sand: 2700 med. Smill Rd                                     |
|          | 6         | 15.0      | 16.5          | 13     | 26-8     |           |        | Cohesive as claim                                                    |
| T        | 7         | 18.0      | 19.5          | 16     | 7-13-17  | 3         | 9      | Sand: & 70% med id                                                   |
|          | 8         | 71.0      | 22.5          | 18     | 4-10-9   |           |        | 25 to fine, rd.                                                      |
|          | 9         | 24,0      | 25.5          | 18     | 4-7-16   |           |        | Non coherino                                                         |
|          | 10        | 27.0      | 2 <b>8.</b> 5 | 15     | 3-7-13   |           |        | Moderate Vellowishin own 10YR 3/4                                    |
|          | <u>11</u> | 30.0      | 31.5          | 8"     | 3-7-11   |           |        | Trace gravel ( 6.0, L7cm dian<br>Coarse sand 20 increases with depth |
|          |           |           |               |        |          |           |        | to about 40's crs. rd.<br>~ 50% med, rd                              |
|          |           |           |               |        |          | 9         | 22     | Moist.                                                               |
|          |           |           |               |        |          |           | 6.6    | 2and: Med. 11 2: 80%<br>Cis rd: 2: 15%                               |
| <i>.</i> |           | - <u></u> |               |        |          |           |        | fin the Star<br>Trace gravel                                         |
|          |           | <u> </u>  | L             |        |          |           |        | UNSEY YEROW SI 194 Continues                                         |



| Boring N | 10. | <u>B-</u> | 1     |
|----------|-----|-----------|-------|
| Sheet    | 2   | of        | 2     |
| Project  | No. | 14:       | 56-01 |

<

## SUBSURFACE EXPLORATION LOG CONT'D

|          |      | Samp | le Data                               |          | Inte        | erval         | Log      | Soil Description                                          |
|----------|------|------|---------------------------------------|----------|-------------|---------------|----------|-----------------------------------------------------------|
| No.      | From | To   | Inches                                | Blows/6" | From        | То            |          | (Continuel from Page 1)                                   |
|          |      |      | Recov.                                |          | 9           | 22            |          | Color change @ ~ 12'= to mad. yellowish<br>Brown 10/15/4. |
|          |      |      |                                       |          |             |               |          | 1" (IS sund lense @ 15.2"                                 |
|          |      |      |                                       |          |             |               |          | Color change (Wa 15 to Dusky Vellow                       |
|          |      |      |                                       |          |             |               |          | (rs Sand 70 increases to about                            |
|          |      |      |                                       |          |             |               |          | 25 % ~ 18"                                                |
| <u> </u> |      |      | -                                     |          |             |               |          | med soul & 75 %                                           |
|          |      |      |                                       | · · ·    | 22          | 31.5          |          | Med Sand, well souted                                     |
|          |      |      |                                       |          |             | End &<br>Bore |          | Fine Sound a 5%                                           |
|          |      |      |                                       |          |             | F             |          | Non cohesive, dry. brown                                  |
|          |      |      |                                       |          |             |               |          | 10 YR 5/4                                                 |
|          | •    |      |                                       |          |             |               | :        | Wet @ 28 0'                                               |
|          |      |      |                                       |          |             |               |          |                                                           |
|          |      |      |                                       | -        |             |               |          | Trace gravel, - Immedian                                  |
|          |      |      |                                       |          |             |               |          | Last split-spine @ 30-315'                                |
|          |      |      |                                       |          | ,<br>,<br>, |               |          |                                                           |
|          |      |      |                                       |          |             |               |          | End of Boring (a) 31.5                                    |
|          |      |      |                                       |          |             |               |          |                                                           |
|          |      |      |                                       |          |             |               |          | Boring was pressure growted                               |
|          |      |      |                                       |          |             |               |          | Bontonite (Volclay) initiator Grout.                      |
|          |      |      | · · · · · · · · · · · · · · · · · · · |          |             |               |          |                                                           |
|          |      |      |                                       |          |             |               |          | model for GW VOC q metals                                 |
|          |      |      |                                       |          |             |               |          | Tion ander (a 1 - 50 pr)                                  |
|          |      |      |                                       |          |             |               |          |                                                           |
|          |      |      |                                       |          |             |               |          |                                                           |
|          |      |      |                                       |          |             |               |          |                                                           |
|          |      |      |                                       |          |             |               |          |                                                           |
|          |      |      |                                       |          |             |               |          |                                                           |
|          |      |      |                                       |          |             |               |          |                                                           |
|          |      |      |                                       |          |             |               | <u> </u> |                                                           |

EIS ENVIRONMENTAL ENGINEERS. INC. + 1701 North Ironwood Drive + South Bend, Indiana 46635 + 219/277-5715

| _            | ~            | $\sim$                    |                   |              |           |                           |       |                                                                                                                                                                                                           |
|--------------|--------------|---------------------------|-------------------|--------------|-----------|---------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |              |                           | 5)                |              |           |                           |       | Boring No. $B-2$<br>Sheet 1 of<br>Project No. 1456-01                                                                                                                                                     |
|              |              |                           |                   | SUB          | SURFACE   | EXPLORA                   | 101TA | N LOG                                                                                                                                                                                                     |
| ion          | . 5          | outh                      | Boud De           | ot of Ecenou | ic Pev. s | ite Loca                  | ition | n Transwestern site                                                                                                                                                                                       |
| ogge         | d By         | J.                        | C. 4              | Sporteder    | D         | ate Star                  | ted   | <u>9-28-88</u> Date Completed                                                                                                                                                                             |
| orin         | g Loc        | ation                     | B-2 5             | ee site map  | , н       | ammer W                   | t     | 140 lbs                                                                                                                                                                                                   |
| orin         | g Met        | hod _                     | HOLLOW            | STEM AUGE    | R D       | rop Dis                   | tanc  | e <u>30"</u>                                                                                                                                                                                              |
| ampl         | er Ty        | pe -                      | SPLIT S           | POON         | ` S       | ampler                    | Size  | 18"                                                                                                                                                                                                       |
| -<br>atum    |              |                           |                   |              | S         | urface                    | Elev  | ation                                                                                                                                                                                                     |
| Roun         | IDVATE       | R DEE                     | TH: Whi           | le Drilli    | .ng _ 7   | 7 '                       | Ft.   | At Completion <u>76.5</u> Ft.                                                                                                                                                                             |
| Eter         | . Comt       | letio                     | on 0,5            | Hrs. 26.5 F  | 't;       | Hrs                       | _Ft;  | HrsFt;HrsFt.                                                                                                                                                                                              |
|              |              |                           |                   |              | •         |                           | {     | <u>.</u>                                                                                                                                                                                                  |
| No.          | From         | Samp]<br>To               | le Data<br>Inches | Blows/6"     | From      | To                        | rog   | Top Soil & 1" @ Top. Plack, rods.                                                                                                                                                                         |
|              |              |                           | Recov.            |              | 0         | 3.2                       |       | Sandy Loam: Med sid said 5.80 %.                                                                                                                                                                          |
| 1            | Ü            | 1.5                       | 14                | 4.9.7        |           |                           |       | Cohesino to Scricohrsivo<br>In De Jo Provin SVR 4/4                                                                                                                                                       |
| 2            | 3.0          | 4.5                       | 18                | 2-3-3        | 3.2       | 9.3                       | _     | Sand: Med. rd a 90%                                                                                                                                                                                       |
| 3            | 6.0          | 7.5                       | 18                | 2-2-2        | • .       |                           |       | file ref & 5 to<br>Cisid a 5 to                                                                                                                                                                           |
| 4            | 9.0          | 10,5                      | 15                | 2-3-4        |           |                           |       | Mais, Moderate yellowish Brown                                                                                                                                                                            |
| 5            | n.0          | 13.5                      | 14                | 3-9-6        |           |                           |       | Fine sand & 759 fran 6.0 to 6.3                                                                                                                                                                           |
| 6            | 15.0         | 16.5                      | 14                | 3-8-11       |           |                           |       | (Mrd. 11 72 70", (15 72 5")<br>moist.                                                                                                                                                                     |
| 7            | 18.0         | 19.5                      | 15                | 3-7-11       | 9.3       | 24.0                      |       | Sand: Meda Cis.<br>Med a Zomo                                                                                                                                                                             |
| 8            | 21.0         | 77.5                      | 8                 | 4.9-13       | - ·       |                           |       | (1) 5 2 2 pro                                                                                                                                                                                             |
|              |              | 1.00                      | 112               | 4-8-11       |           |                           |       | molende Vellouige incom                                                                                                                                                                                   |
| 9            | 74.0         | 75.5                      | 10                | 1            |           |                           | 1     | ( Mise Sund loren 7" Thirdy (a 10. C                                                                                                                                                                      |
| 9<br>10      | 74.0<br>77.0 | 75.5<br>78. <sup>5</sup>  | 18                | 4-8-11       |           |                           |       | Color change 6 21 to Pusky Vellow                                                                                                                                                                         |
| 9<br>10<br>: | 74.0<br>77.0 | 75.5<br>78.5              | 18                | 4-8-11       | 74.0      | 28.5<br>End of            |       | Colur change 6 21 to Pusky Vellow<br>Sand. Med. Woll sorted<br>Id = 9500                                                                                                                                  |
| 9            | 74.0         | 75, 5<br>78, <sup>c</sup> | 18                | 4-8-11       | 74.0      | 28.5<br>End of<br>Bostiny |       | Colur change & 21 to Pusky Vellow<br>Send. Med. Well sorted<br>Td = 9500<br>Fine, 102 500<br>Moiet Ducky Vellow                                                                                           |
| 9            | 74.0         | 75.5                      | 18                | 4-8-11       | 74.0      | 28.5<br>End of<br>Bostiny |       | Colur change (21' to Pusky Vellow<br>Send. Med. Well sould<br>The 10 2 500<br>Fine 10 2 500<br>Moist. Dusky Yellow SY(6/4<br>Water (270)                                                                  |
| 9            | 74.0         | 75.5<br>79. <sup>6</sup>  | 18                | 4-8-11       | 74.0      | 28.5<br>End of<br>Bostiny |       | Colur change 6 21 to Pusky Vellow<br>Sand. Med. Well sorth<br>id = 9500<br>Fine 102 500<br>Moist. Dusky Yellow 54(6/4<br>Water @ 27.0<br>End of Berning (c) 28.5<br>Grandel (Furgue) with Entanders under |

| Boring No.  | <u>β-3</u> |
|-------------|------------|
| Sheet       | of         |
| Project No. | 1456-01    |

. .

# SUBSURFACE EXPLORATION LOG

Si(S

e

|                                           | · · · · · · · · · · · · · · · · · · ·      |
|-------------------------------------------|--------------------------------------------|
| Client South Bend Dept. of Economic Dev.  | site Location Transwestern Site            |
| Logged By J.C. Sporteder                  | Date Started <u>9-28-88</u> Date Completed |
| Boring Location <u>B-3</u> , See Site Map | Hammer Wt. <u>140 lbs</u>                  |
| Boring Method HOLLOW STEM AUGER           | Drop Distance _30"                         |
| Sampler Type SPLIT SPOON                  | Sampler Size <u>18"</u>                    |
| Datum                                     | Surface Elevation                          |
| GROUNDWATER DEPTH: While Drilling         | 28 Ft. At Completion 28.5 Ft.              |
| After Completion $0.5$ Hrs. 28.5Ft:       | Hrs. Ft; Hrs. Ft; Hrs. Ft.                 |

|   |             |            | Samp] | le Data |          | Inte | rval                                    | Log | Soil Description                                                                                     |
|---|-------------|------------|-------|---------|----------|------|-----------------------------------------|-----|------------------------------------------------------------------------------------------------------|
|   | No.         | From       | To    | Inches  | Blows/6" | From | To<br>C.S                               |     | Top Soil, with Plant roots, Gry Deck U-2                                                             |
|   | <del></del> |            |       | Aecuv.  |          | 0.5  | 1.5                                     |     | Crushed Cinfer's, Coal, Trace gravel                                                                 |
|   | 1           | Ü          | 1.5   | 15      | 3-10-10  |      | 2                                       | -   | place No-1, Noncomment                                                                               |
|   | 2           | 3.0        | 4.5   | 18      | 2-3-4    | いろ   | 2.0                                     |     | Zanay Llay: Med to the sand = 3500<br>claure 6500 - vient                                            |
|   | 3           | 6.0        | 7.5   | 18      | 2-4-3    |      |                                         |     | Cohesive, Moderate Blown SIN 914                                                                     |
|   | 4           | 9.0        | 10.5  | 18      | 7-4-5    | 3.D  | 28.5<br>Last J                          |     | Sand: Med, rd = 95%                                                                                  |
|   | 5           | 12.0       | 13.5  | 18      | 7-5-8    |      | split spoor<br>End of                   |     | CTS Sand & 2.5%                                                                                      |
| · | 6           | 15.0       | 16.5  | 18      | 3-7-10   |      | 80re<br>230'.                           |     | Light Brown > 1 K 3/6<br>Conser Sand Lance 2" thick a 28                                             |
|   | 7           | 18.0       | 19.5  | 18      | 4-8-9    |      |                                         |     | Color change @ 6 to Mod. Yellowish Brown                                                             |
|   | 8           | 21.0       | 77,5  | 15      | 2-5-6    |      |                                         |     | Nor cohesive, dry                                                                                    |
|   | 9           | 74.0       | 25.5  | 15      | 1-4-7    |      |                                         |     | Color charge (29' to Dusky I dlow<br>Sy 6/4<br>Two 7 mm Thick Black Advised for                      |
|   | 10          | 77.0       | 78.5  | 18      | 3-7-13   |      |                                         |     | coal stringing) @ 10'.                                                                               |
|   |             | ·,         |       |         |          |      |                                         |     | Moist & 16.<br>(CIS sand increases to ~ 1000 18')                                                    |
|   |             |            |       |         | •        |      |                                         |     | $\left  \begin{array}{c} mcd \ rd \approx 85^{70} \\ smell \ graved \approx 590 \end{array} \right $ |
|   |             |            |       |         |          | 1    |                                         |     | Zmin Thick coal stringer at 22<br>Wet @ 78'.                                                         |
|   | •<br>•      | · <u> </u> | 1     |         | ~        | ]    | • · · · · · · · · · · · · · · · · · · · |     | Last Split-spoon is 27-28.5.<br>Augor advanced to 30' to provide prough water                        |
|   |             | <br> ; /   | 1     |         |          |      |                                         |     | To Sample.<br>Pressure outed with Bentonite/initiator<br>Pressure Dipo                               |
|   |             | 1745 C     |       |         |          | 1    |                                         |     | Sampled Groundwants in anger for VOC ; movels                                                        |

APPENDIX D

# SECTION 5.4 OF THE EIS PID ANALYZER STANDARD OPERATING PROCEDURES

### 5.4 Headspace Soil Vapor Monitoring Method

Once the split-spoon/hand auger sample is collected from the bore hole, part of the sample is used to monitor the soil vapors from the boring.

Using a clean stainless steel spatula portions of the splitspoon/hand auger sample are collected into a glass jar. Aluminum foil is used to seal the jar. The samples are then warmed for a predetermined amount of time, then headspace analysis is performed. The aluminum foil is punctured with the tip of the PID instrument and the soil vapors measured.

When recording the headspace results, always indicate the minutes used to equilibrate the soil inside the jar prior to reading (per instructions on the soil vapor field analysis record sheet).

Temperature conditions to which all jars are exposed should be approximately the same during the course of the day. These conditions are to be annotated in the Comments section of the field sheet.

